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there are only two goods, see Equilibrio, eficiencia e imperfecciones del mercado by
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General Equilibrium SS05. Finally, for the dynamic case, I will follow Ljyungqvist
and Sargent, Recursive Macroeconomic Theory, 4th edition, Chapter 8.

A Market Economy with Contingent Commodities

In the following, we consider an economy with n > 0 goods (physical commodities),
H consumers and J firms. The new element is that technologies, endowments and
preferences are now uncertain. They depend on the state of the world. This concept
was introduced in uncertainty theory. For simplicity, S = {1, · · · , s, · · · , S} is taken
finite (abusing notation).

Definition 1. For each commodity ℓ = 1, · · · , n and state s = 1, · · · , S, a unit of a
state-contingent commodity ℓs is a title to receive a unit of the physical good ℓ if and
only if s occurs. Accordingly, a state-contingent commodity vector is specified by

(x1(1), ..., xn(1))︸ ︷︷ ︸
x(1)

, ......., (x1(s), ..., xn(s))︸ ︷︷ ︸
x(s)

, ......., (x1(S), ..., xn(S))︸ ︷︷ ︸
x(S)

∈ RnS.

Similarly, a price vector of contingent goods would be given by:

(p1(1), ..., pn(1))︸ ︷︷ ︸
p(1)

, ......., (p1(s), ..., pn(s))︸ ︷︷ ︸
p(s)

, ......., (p1(S), ..., pn(S))︸ ︷︷ ︸
p(S)

.
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Remark. A contingent commodity vector (x1(s), · · · , xn(s)) can be viewed as a collec-
tion of n random variables, xℓ : S → R.

Similarly, we can define the endowments of consumers h = 1, · · · , H as the con-
tingent vector

ωh = (ω1(1), ..., ωn(1))︸ ︷︷ ︸
ωh(1)

, ......., (ω1(s), ..., ωn(s))︸ ︷︷ ︸
ωh(s)

, ......., (ω1(S), ..., ωn(S))︸ ︷︷ ︸
ωh(S)

.

The preferences of consumers may also depend on the state of the world. For
instance, the enjoyment of wine may depend on the health state of the individual.
The preference of consumer h, ⪰h is defined over Xh ⊂ RnS.

Consumers evaluate contingent commodity vectors by first assigning to the state
s a probability πsh. Index h points out that the probability distribution

πh = (πh
1 , · · · , πh

s , · · · , πh
S) ∈ ∆(S)

depends on the individual. Then, evaluating the commodity vector at sate s, accord-
ing to a Bernouilli state-dependent utility function

ush(xh
1(s), · · · , xh

n(s)).

Hence, the preferences of consumer h over two contingent commodity vectors xh, xh′ ∈
Xh ⊂ RnS satisfies

xh ⪰h xh′ ⇔ ∑
s∈{1,··· ,S}

πh(s)uh
s (xh(s)) ≥ ∑

s∈{1,··· ,S}
πh(s)uh

s (xh′(s))

We denote Uh(xh) = ∑s∈{1,··· ,S} πh(s)uh
s (xh(s)).

Example 1. Suppose there are only two states s1 and s2, representing good and bad
weather. There are two commodities, seeds (ℓ = 1) and crops (ℓ = 2). Hence,
the elements of Yj are four dimensional vectors. Seeds must be planted before the
resolution of uncertainty about the weather and a unity of seeds produce a unit of
crops only if the weather is good. Thus,

yj = (y11j, y21j, y12j, y22j) = (−1, 1,−1, 0),

where the convention is yℓs, is a feasible plan.

Remark. If we introduce production, we assume state independence on shares θjh ≥ 0,
∑j θjh = 1.

Remark. In the setting described previously in this section„ time plays no explicit
formal role. In reality, nonetheless, states of the world unfold over time. Moreover, it
is possible to consider t = 0, ..., T periods (so T + 1 dates), S states and assume that
the states emeerge gradually through a tree.
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Arrow-Debreu Equilibrium

We now postulate the existence of a market for every contingent commodity ℓs. These
market open before the resolution of uncertainty, at date 0 we could say. The price of
the commodity is denoted pℓs. What is purchased or sold in the market for the con-
tingent commodity ℓs is commitments to receiver or deliver amounts of the physical
good ℓ, if and when state of the world s occurs. Note that, although commodities are
contingent, payments are not. It is also mandatory that every agent is able to recog-
nize the occurrence of state s. The model described is nothing but a particular (with a
large number of goods) case of the economies studied in classical general equilibrium
theory.

When dealing with contingent commodities, we refer to Arrow-Debreu equilib-
rium instead of Walrasian equilibrium.

Definition 2. An allocation

(x∗1 , · · · , x∗H, · · · , y∗1 , · · · , y∗J ) ∈
H

∏
h=1

Xh ×
J

∏
j=1

Yj ⊂ RnS(H+J)

and a system of prices for the contingent commodities p = (p11, · · · , pnS) ∈ RnS

constitute an Arrow-Debreu equilibrium if

1. For very j, y∗j satisfies p · y∗j ≥ p · yj, ∀ yj ∈ Yj.

2. For every h, x∗h is a maximal element for ⪰h in the budget set{
xh ∈ Xh : p · xh ≤ p · ωh +

J

∑
j=1

θhj p · y∗j

}

3. ∑H
h=1 x∗h = ∑J

j=1 y∗j + ∑H
h=1 ωh ∈ RnS.

Example 2. Let us consider the case with H = 2, n = 1 and S = 2. This lends itself
into an Edgeworth box representation since there are precisely two commodities and
two individuals.
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1. Endowments: ω1 = (1, 0), ω2 = (0, 1), each entry for each state.

2. No aggregate risk: ω = ω1 + ω2 = (1, 1). Uncertainty determines who gets the
endowment.

3. uh(·) state independent:

uh(x1h, x2h) = π1huh(x1h) + π2huh(x2h).

4. Same probability distribution for each h. Hence, since at x1h = x2h

MRSh =
π1h
π2h

,

we have

Figure 1: No aggregate risk and same subjective probabilities.

If we assume that π11 < π12 (so the second consumer gives more probability so state
1), we would have

Figure 2: No aggregate risk and different subjective probabilities.

Each consumer’s equilibrium consumption is higher in the state he thinks com-
paratively more likely (relative to the belief of the other consumer).
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Example 3. Now we consider aggregate risk ω1 + ω2 = (2, 1). Utilities and proba-
bilities are the same, u(·) and (π1, π2). A graphical analysis of indifference curves
yields

Figure 3: Aggregate risk and same subjective probabilities.

At the equilibrium, by a graphical analysis, we must have

p1

p2
<

π1

π2
.

If, for instance, π1 = π2 = 1/2, then p1 < p2: the price of one contingent unit of
consumption is larger for the state for which the consumption good is scarcer: con-
tingent instruments are comparatively more valuable if their returns are negatively
correlated with the market return.

Example 4. An economy consists of two agents (R and J), two goods (x, y), and two
states of nature (1, 2). Both consumers have the same assessments of the probabilities
for each state

(
1
2 , 1

2

)
. The utility functions are given by uh(x, y) = ln(x) + ln(y). The

endowments are:

State 1 State 2

Robinson (2,2) (0,0)
Jane (0,0) (2,2)

Solution: Robinson’s problem is

max{xR(1), yR(1), xR(2), yR(2)} 1
2
[ln(xR(1)) + ln(yR(1))] +

1
2
[ln(xR(2)) + ln(yR(2))]

s.t. p · (xR(1), yR(1), xR(2), yR(2)) ≤ p · (2, 2, 0, 0)︸ ︷︷ ︸
ωR

.
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With respect to Jane, she solved

max{x J(1), yJ(1), x J(2), yJ(2)} 1
2
[ln(x J(1)) + ln(yJ(1))] +

1
2
[ln(x J(2)) + ln(yJ(2))]

s.t. p · (x J(1), yJ(1), x J(2), yJ(2)) ≤ p · (0, 0, 2, 2)︸ ︷︷ ︸
ω J

.

Here p = (px(1), py(1), px(2), py(2)). Let us denote ωR = p · ωR and ωJ = p · ω J By
FOC (note that we are dealing with Cobb-Douglas),

xR(s) =
ωR

4px(s)

yR(s) =
ωR

4py(s)

x J(s) =
ωJ

4px(s)

yJ(s) =
ωJ

4py(s)
.

Market clearing conditions yield

xR(s) + x J(s) = 2, s = 1, 2

yR(s) + yJ(s) = 2, s = 1, 2.

Hence, we obtain the system

wR

4px(1)
+

ωJ

4px(1)
= 2 =⇒ ωR + ωJ = 8px(1)

ωR

4py(1)
+

ωJ

4py(1)
= 2 =⇒ ωR + ωJ = 8py(1)

ωR

4px(2)
+

ωJ

4py(2)
2 =⇒ ωR + ωJ = 8py(2).

Solving the system, we find px(1) = py(1) = px(2) = py(2) = 1, ωR = 4 and ωJ = 4.
Thus,

(xR(1), yR(1), xR(2), yR(2)) = 1 ∈ R4

(x J(1), yJ(1), x J(2), yJ(2)) = 1 ∈ R4.

This is consistent with the symmetry of the preferences. What about xαyβ, 0 < α, β <

1?

Sequential trading

We introduce a model of se sequential trade and state that Arrow-Debreu equilibrium
can be reinterpreted by means of trading processes that unfold through time.
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We only consider pure exchange economies and Xh = RnS
+ . We assume that there

are two dates, t = 0 and t = 1. There is no consumption at t = 0. There are again nS
possible contingent commodities which are set up at t = 0 and (x∗1 , · · · , x∗I ) ∈ RnSH

is an Arrow-Debreu equilibrium allocation with prices (p11, · · · , pnS) ∈ RnS. These
markets are for delivery of goods at t = 1! When period t = 1 arrives, a state of the
world s is revealed and contracts are executed, and every consumer receives

x∗h(s) = (x∗1h(s), · · · , x∗nh(s)) ∈ Rn.

Suppose nonetheless that, after t = 1 and the resolution of the uncertainty, but be-
fore the consumption, markets for the n physical goods were open (spot markets).
Question: would there be any incentive to trade in these markets? Awnser: no.
Why? violation of Pareto optimality (first welfare theorem). Hence, at t = 0, the con-
sumers can trade directly to an overall Pareto optimal allocation: there is nor reason
for further trade to take place, ex ante Pareto implies ex post Pareto. However, if no
all of the nS contingent commodity markets are available at t = 0, the business is
complectly different.

Arrow (1953), noted that, even if not all the contingent goods are available at t = 0,
it may still be the case, under some conditions, that at t = 1 Pareto optimality is
reached. When is this? Well, if at least one of the physical commodities can be traded
contingently at t = 0, spot markets occur at t = 1 and the spot equilibrium prices are
correctly anticipated. Intuition: if spot trade can occur within each state, then the
only task remaining at t = 0 is to transfer the consumer’s overall purchasing power
efficiently across states. This last can be accomplished using contingent trade in a
single commodity. This allows to reduce the number of required forward markets
from LS to S.

Synthesis: for the Arrow-Debreu Equilibrium to exist, it is necessary to have a large
number of contingent goods markets (nS). This is a particularly strong requirement.
It is however possible to relax this assumption by adopting a sequential structure in
the economy and assuming the existence of only one contingent good for each state
of nature (Arrow securities).

1. At t = 0, consumers have expectation regarding the spot prices at t = 1, for
each s ∈ {1, · · · , S}.

2. Let us denote the expected vector of prices to prevail in state s in the sport
market by p(s) ∈ Rn.

3. Let use denote the overall expectation vector by p ∈ Rns. We are implicitly
assuming that expectation coincide between consumers.

4. At t = 0, there is trade in the S contingent commodities, 11, · · · , 1s, · · · , 1S:
there is contingent trade only in the good with label 1.

5. We denote the vector of prices of such contingent commodities traded at t = 0
by q = (q(1), · · · , q(S)) ∈ RS.
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6. Faced with prices q ∈ RS at t = 0 and expected spot prices (p(1), · · · , p(S)) ∈
RnS at t = 1, the consumer h formulates a trading plan (zh(1), · · · , zh(s)) ∈ RS

for contingent commodities at t = 0, as well as a set of spot market consumption
plans (xh(1), · · · , xh(S)) ∈ RnS.

7. The utility maximization problem faced by consumer h is therefore

max
{x(1)h,...,x(S)h}∈RnS

+ ,
{z(1)h,...,z(S)h}∈RS

Uh(x(1)h, · · · , x(S)h) (1)

s.t.
S

∑
s=1

q(s)zh(z) ≤ 0

p(s) · xh(s) ≤ p(s)ωh(s) + p1(s)zh(s), ∀ s ∈ {1, · · · , S}.

The first restriction is the budget constraint corresponding to the trade at t = 0.
The family of restrictions regarding the second line are the budget constraints for
the different spot markets (one for each state). Note that zh(s) could be negative or
positive. If zh(s) < −ωh

1(s), the one says that at t = 0 consumer h is selling good 1
for short. This is because he is selling at t = 0, contingent on state s ocurren, more
than he has at t = 1 is s occurs.

Definition 3. A Radner equilibrium (Arrow securities) is an allocation

{(xh∗, zh∗)}h ∈ RH(nS+S)

and a price vector (p∗, q∗) ∈ RnS+S such that:

1. For each agent h, (xh∗, zh∗) solves problem (1).

2. For each state s, ∑h zh∗(s) ≤ 0 and ∑h xh∗(s) ≤ ∑h ωh(s).

Proposition 1. If the allocation x∗ ∈ RnSH and the contingent commodities price vectors
{p(1), · · · , p(S)} ∈ RnS

++ constitute an Arrow-Debreu equilibrium, then there are prices
q ∈ RS

++ for contingent first good commodities and consumption plans for these commodities
{z1∗, · · · , zH∗} ∈ RSH such that the equilibrium plans x∗, z∗ and the prices q and the spot
prices (p1, · · · , pS) constitute a Radner equilibrium.

Proposition 2. If the consumption plans x∗ ∈ RnHS, z∗ ∈ RSH and prices q ∈ RS
++,

(p(1), · · · , p(S)) ∈ RnS
++ constitute a Radner equilibrium, then there are multipliers

(µ(1), · · · , µ(S)) ∈ RS
++

such that the allocation x∗ and the contingent commodities price vector

{µ(1)p(1), · · · , µ(S)p(S)} ∈ RnS
++

constitute an Arrow-Debreu equilibrium.1

1The multiplier µs is interpreted as the value at t = 0 of a dollar at t = 1 and state s.
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Proof. See Mas-Colell, Whinston and Green (1995), pp. 697.

Example 5. Find the Radner equilibrium with assets in Example 4 using the following
asset structure.

State 1 State 2

z1 1 1
z2 0.5 2

Now, budget constraints are

px(1)xR(1) + py(1)yR(1) = px(1)ωR
x (1) + py(1)ωR

y (1) + px(1)zR(1) · 1 + px(1)zR(2) · 0

px(2)xR(2) + py(2)yR(2) = px(2)ωR(2) + py(2)ωR
y (2) + px(2)zR(2) · 1 + px(2)zR(1) · 0.

Hence, zR(1) = −2 and zR(2) = 2. Analogously for Jane, zJ(1) = 2, zJ(2) = −2.
Since,

q(1)z
R(1) + q(2)zR(2) ≤ 0

q(1)zJ(1) + q(2)zJ(2) ≤ 0,

q∗1 = q∗2 and the good 1 is sold for short (zR(1) < −ωR
x (1)).

Asset Markets

The S contingent commodities studied in the previous section serve the purpose of
transferring wealth across the states of the world that will be revealed in the future
(t = 1). They are, however, theoretical constructs that rarely have exact counterparts
in the real world.

Nonetheless, in the real world there are assets, or securities that, to some extent
perform the wealth-transferring role which was assigned to the contingent commodi-
ties.

1. We consider again two periods, t = 0 and t = 1 (which is when the information
is revealed).

2. Consumption takes only place at t = 1.

3. An asset (a unit of an asset), is a title to receive either physical goods or dollars
at t = 1, and the amount depends on s.

4. The payoffs of an asset are called returns. If the returns are in physical goods,
the asset is called real. Otherwise, they are called financial assets.

5. We are going to deal only with real assets.
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Definition 4. A unit of an asset or security is a title to receive an amount rs of good
1 at t = 1 if s occurs. An assert is therefore characterized by its return vector r =

(r1, · · · , rS) ∈ RS.

Example 6. Examples of assets include:

1. r = (1, · · · , 1), riskless asset.

2. r = (0, · · · , 0, 1, 0, · · · , 0).

3. r = (1, 2, 1, · · · , 1, 2).

Example 7. Options. This is an example of a so-called derivative asset, i.e., an asset
whose return are somehow derived from the returns of another asset. Hence, suppose
there is an initial asset r ∈ RS. Then, en European call option on the primart at the
strike price c ∈ R is itself an asset. A unit of this asset gives the option to buy, after
the state is revealed, a unit of the primary asset at price c. Formally,

r(c) = (max{0, r1 − c}, · · · , max{0, rS − c}).

1. The number of assets in the economy is K. The prices of the assets traded in
period t = 0 are q = (q1, q2, . . . , qK).

2. A vector of traded assets, denoted by z = (z1, z2, . . . , zK) ∈ RK, is called a
portfolio.

Definition 5. A Radner equilibrium (Assets) is an allocation {(xh∗, zh∗)}h ∈ RH(nS+K)

and a price vector (p∗, q∗) ∈ RnS+K such that

1. For each h, (xh∗, zh∗) maximizes expected utility

Uh(x(1)h, . . . , x(S)h) =
S

∑
s=1

πh(s)uh(x(s))

subject to ∑K
k=1 qkzh

k ≤ 0 and p(s)x(s)h ≤ p(s)ω(s)h + ∑K
k=1 p1(s)zh

krk(s) for all s.

2. ∑H
h=1 zh∗

k ≤ 0 for all k.

3. ∑H
h=1 x(s)h∗ ≤ ∑h ω(s)h for all s.

Remark. The budget constraint is given byx ∈ RnS
+ : ∃ zh ∈ RK, q · zh ≤ 0 ∧

 p(1)(xh(1)− ωh(1))
...

p(S)(xh(S)− ωh(S))

 ≤

r1(1) · · · rK(1)
... . . . ...

r1(S) · · · rK(S)


zh(1)

...
zh(S)


 .

Proposition 3. Assume that every return vector is nonnegative and nonzero, that is, rk ≥ 0
and rk ̸= 0 for all k = 1, · · · , K. Then, for every q ∈ RK of asset prices arising in a Radner
equilibrium, we can find µ ∈ RS

+ such that qk = ∑S
s=1 µ(s)rk(s).
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Dynamics

In each period t ≥ 0, there is a realization of a stochastic event st ∈ S. We denote the
history of events up and until time t be denoted st = [s0, s1, · · · , st]. The unconditional
probability of observing a particular sequence of events st will be denoted πt(st), a
probability measure. For t > τ, we write the probability of observing st conditional
on the realization of sτ as πt(st|sτ). Now, we assume that trade occurs after observing
s0 (hence, π0(s0) = 1, an initial state.

The model considers h = 1, · · · , H consumers. Consumer h owns a stochastic
endowment of one good yh

t (s
t) that depends on the history st. The history is ob-

served by every one. Consumer h purchases a history-dependent consumption plan
ch = {ch

t (s
t)}∞

t=0 and orders (in terms of an implicity preference) these consumption
streams by

Uh(ch) =
∞

∑
t=0

∑
st

βtuh(ch
t (s

t))πt(st)︸ ︷︷ ︸
Expected utility.

, β ∈ (0, 1). (2)

Note that this is equivalente to

E0

[
∞

∑
t=0

βtuh(ch
t )

]
,

where E0 denotes the mathematical expectation operator conditioned on s0. We as-
sume, as it is natural and usual, that uh(c) is twice differentiable, increasing and
strictly concave for c ≥ 0. Moreover, limc↓0

d
dc uh = ∞ (Inada condition). A feasible

allocation satisfies
H

∑
h=1

ch
t (s

t) ≤
H

∑
h=1

yh
t (s

t), ∀ t, st. (3)

Pareto problem

As a benchmark against which ti measure allocations attained by a market econ-
omy, we seek efficient allocations. In particular, we will be interested in Pareto op-
timal/efficient allocations. In this situation, the central planner attaches nonegative
Pareto weights λh to the consumer’s utilities and chooses allocations ch to maximize

W =
H

∑
h=1

λhUh(ch) =
∞

∑
t=0

∑
st

{
H

∑
h=1

λhβtuh(ch
t (s

t))πt(st)

}
.

Hence, if θt(st) is the Lagrange multiplier associated feasibility constraint (3),

L =
∞

∑
t=0

∑
st

{
H

∑
h=1

λhβtuh(ch
t (s

t))πt(st) + θt(st)
H

∑
h=1

(yh
t (s

t)− ch
t (s

t))

}
.
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FOC with respect to ch
t (s

t) yields

βtu′
h(c

h
t (s

t))πt(st) = λ−1
h θt(st),

for each h, t, st. Hence,

u′
h(c

h
t (s

t))

u′
1(c

1
t (st))

=
λ1

λh

ch
t (s

t) = [u′
h]
−1(λ−1

h λ1u′
1(c

1
t (s

t))).

Thus, replacing in the feasibility condition,

∑
h
[u′

h]
−1(λ−1

h λ1u′
1(c

1
t (s

t))) = ∑
h

yh
t (s

t).

Time 0 trading: Arrow-Debreu securities

Consumers trade a complete set of dated history-contingent claims to consumption.
Trades occur at time 0, after s0 is realized. At t = 0, consumers can exchange claims
on time t consumption, contingent on history st at price q0

t (s
t). The consumer’s

budget constraint is

∞

∑
t=0

∑
st

q0
t (s

t)ch
t (s

t) ≤
∞

∑
t=0

∑
st

q0
t (s

t)yh
t (s

t).

The consumer’s problem is to chose ch in order to maximize (2). In this model, all
trades occur at t = 0. After time 0 trades that were agreed to at time 0 are executed.
FOC conditions lead to

∂Uh(ch)

∂ch
t (st)

= βtu′
h(c

h
t (s

t))πt(st) = µhq0
t (s

t), ∀ h, t, st.

Thus, for any h1, h2 ∈ {1, · · · , H},

u′
h1
(ch1

t (st))

u′
h2
(ch2

t (st))
=

µh1

µh2

.

Therefore,

ch
t (s

t) = [u′
h]
−1
(

u′
1(c

1
t (s

t))
µh
µ1

)
∑
h
[u′

h]
−1
(

u′
1(c

1
t (s

t))
µh
µ1

)
= ∑

h
yh

t (s
t).
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For u(c) = c1−γ−1
1−γ , γ > 0, the CRRA Bernouilli’s utility function,

ch
t (s

t) = ch̃
t (s

t)

(
µh
µh̃

)−1/γ

.

Remark. No aggregate risk: assume there are only two consumers with endowments,
y1

t (s
t) = st and y2(st) = 1 − st. Then, ∑h yh

t (s
t) = 1. Hence,

ch
t (s

t) = ch = (1 − β) ∑
t≥0

∑
st

βtπt(st)yh
t (s

t).

See Ljyungqvist and Sargent Chapter 8 for more details.
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Asset Pricing

This section is based in Federico Echenique’s lecture notes General Equilibrium SS05.
We now turn to a two-period model where consumption occurs at both t = 0 and
t = 1. We assume a single physical good. Time is indexed by t = 0, 1, and uncertainty
at t = 0 is resolved at t = 1. This is the second model studied before.

Basic Definitions and Notation

1. Let S = {s1, s2, . . . , sm} be a set of states.

2. A column vector c ∈ R1+m is called a cash flow.

3. A column vector a = (a1, . . . , am)′ ∈ Rm is called an asset, where ak is the
payment of asset a in period 1 under state sk.

4. Let {a1, . . . , aJ} be a collection of J assets. Collect them in a matrix A with the
j-th column equal to aj. That is,

A =
[
a1 a2 · · · aJ]

m×J .

Examples of Assets

Example 8. A risk-free asset is given by

ar f =
[
1 1 · · · 1

]
∈ Rm.

Example 9. An Arrow-Debreu security aAD
k = ek delivers a unit of the good if and

only if the realized state is sk.

Example 10. An option. Suppose sj = j, where the state represents the value of a stock
market index, and consider an option to buy the index at a fixed strike price p. The
asset can be written as:

a = (0, . . . , 0, j − p, (j + 1)− p, . . . , m − p),

where j − p ≥ 0 and j − 1 − p < 0. This option is exercised only when the price s
exceeds p, providing a payoff of s − p.

Cash Flows and Portfolios

Let qj ∈ R+ be the price of asset aj. Purchasing one unit of asset aj generates the
following cash flow:

(−qj, aj
1, . . . , aj

m) ∈ R1+m.

Analogously, selling one unit of aj at price qj generates the cash flow:

(qj,−aj
1, . . . ,−aj

m) ∈ R1+m.
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Define q = (q1, . . . , qJ) ∈ R
J
+ as the vector of asset prices, where qj is the price of

asset aj. Define W as:

W =

[
−q
A

]
(1+m)×J

.

The j-th column of W represents the cash flow generated by purchasing one unit of
asset aj.

Notation 1. We denote:
⟨W⟩ = {Wz : z ∈ RJ}

as the set of cash flows that can be achieved through a portfolio of assets {a1, . . . , aJ}.
Note that ⟨W⟩ is a linear subspace of R1+m.

Definition 6. A market is a pair (A, q).

Definition 7. An arbitrage opportunity is a cash flow c ∈ R1+m such that c > 0. A
market (A, q) is free of arbitrage opportunities if there is no arbitrage opportunity in
⟨W⟩.

Fundamental Theorem of Arbitrage Pricing

Theorem 1. Let (A, q) be a market. The following statements are equivalent:

1. For any continuous and strictly monotonic utility function u(·) : R1+m
+ → R, the

following maximization problem has a solution:

max
x

u(x) s.t. x ∈ B(ω, A, q),

where B(ω, A, q) = {x ∈ R1+m : ∃z ∈ RJ s.t. x ≤ ω + Wz}.

2. The market (A, q) is free of arbitrage opportunities.

3. There exists π ∈ R1+m
++ such that πW = 0.

4. B(ω, A, q) is compact, and there exists π ∈ R1+m
++ such that:

B(ω, A, q) ⊆ {x ∈ R1+m
+ : π · x ≤ π · ω}.

Proof. See General Equilibrium Theory: SS205.

Farkas’ Lemma

Lemma 1. Let W ∈ Mn×m. Then, exactly one of the following statements is true:

1. There exists z ∈ Rm such that Wz > 0.

2. There exists π ∈ Rn
++ such that πW = 0.
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About Vector π

Let us discuss a little bit more about vector π which is such that

πW = π

[
−q
A

]

= π


−q1 · · · −qj · · · −qJ

a1
1 · · · aj

1 · · · aJ
1

... . . . ... . . . ...
a1

m · · · aj
m · · · aJ

m


= [0](1+m)×J .

Therefore, ∀ j = 1, . . . , J,

[
π0 π1 . . . πm

]

−qj

aj
1
...

aj
m

 = π0(−qj) +
m

∑
i=1

πia
j
i = 0.

We can write:

qj =
m

∑
i=1

(
πi

π0

)
aj

i , ∀ j = 1, . . . , J.

Thus, the price of asset j, qj, at time t = 0 is a weighted sum of its future payments

under the different states aj
1, . . . , aj

m. The weight on the payoff aj
i in state si is πi

π0
.

State Price Vector

Let us normalize the vector π by defining:

π =
[
1, π1

π0
, · · · , πm

π0

]
.

Since πW = 0, we have π
π0

W = πW = 0. Therefore:

qj =
m

∑
i=1

πia
j
i , ∀ j = 1, . . . , J.

Hence, π ∈ ∆ ⊂ Rm
++ is a price vector. The price of a unit good at time t = 0 is 1,

and the price of a unit good at time t = 1 and state si is πi.
The state price vector π allows us to price assets. For example, let yi ∈ R for every

state i = 1, . . . , m, and define the column vector ỹ = (y1, y2, . . . , ym)′ ∈ Rm, so that ỹ
is an asset. The price of asset ỹ can be calculated as:

m

∑
i=1

πiyi.

16



Risk-Free Asset and Risk-Free Rate

A risk-free asset is ar f = (1, . . . , 1) ∈ Rm. In a market with no arbitrage, the price of
the risk-free asset is:

qr f =
m

∑
i=1

πi.

Define the rate of return of the risk-free asset as:

Rr f =
1

qr f =
1

∑m
i=1 πi

.

This rate, Rr f , is known as the risk-free rate.

Risk-Neutral Probability Measure

Definition 8. Risk-Neutral Probability Measure. For any asset j, the expected rate of
return on j is the expected value of the random variable s 7→ aj

s/qj, which we denote
(Rj

s)s∈S or R̃j.

The expectation of R̃j depends on the probability measure used. A particularly
useful probability measure can be defined as:

pi =
πi

∑m
h=1 πh

,

so that p = (p1, . . . , pm) ∈ ∆ is a probability distribution over S. This distribution p
is termed the risk-neutral probability measure. Its name comes from the following
calculation:

qj

qr f =
m

∑
h=1

phaj
h = Ep[ãj],

and:

Rr f =
1

qr f =
m

∑
i=1

pi
aj

s

qj = Ep[R̃
j
s].

The Rate of Return and Risk-Neutral Probability Measure

The rate Rr f is known as the risk-free rate.

Definition 9. Risk-neutral probability measure. For any asset j, the expected rate of
return on j is the expected value of the random variable s 7→ aj

s/qj, which we denote
(Rj

s)s∈S or by R̃j.

The expectation of R̃j depends on the probability measure used. A particularly
useful probability measure is given by:

pi =
πi

∑m
h=1 πh

,
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so that p = (p1, . . . , pm) ∈ ∆, is a probability distribution over S. The probability
distribution p is termed the risk-free probability measure. The name comes from the
following calculation:

qj

qr f =
m

∑
h=1

phaj
h = Ep[ãj],

and:

Rr f =
1

qr f =
m

∑
i=1

pi
aj

s

qj = Ep[R̃
j
s].

Market Incompleteness

Let (q, A) be a financial market, and define the matrix W as before. Suppose the
market is free of arbitrage.

Definition 10. The market (A, q) is complete if dim(⟨W⟩) = |S| = m. Otherwise, the
market (q, A) is incomplete.

When a market is incomplete, agents can use the assets to carry out transfers of
the good across states.

Proposition 4. The market (q, A) is complete if and only if dim(⟨A⟩) = m.

Proof. When (q, A) is free of arbitrage, q = π · A (equivalence 3 in Theorem ??).
Thus, q is a linear combination of the rows of A. Therefore, A and W have the same
rank.

Observation 1. When the market is free of arbitrage, then πW = 0 implies that π ∈ ⟨W⟩⊥
(orthogonal complement of ⟨W⟩), so that ⟨W⟩⊥ ̸= ∅. Since π ̸= 0, dim(⟨W⟩) ≥ 1.
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The Capital Asset Pricing Model (CAPM)

Traditional CAPM

The traditional CAPM is summarized by the following equation:

E[R̃j] = Rr f + β(E[R̃m]− Rr f ),

where Rm is the market rate of return. In practice, Rm is taken as the return of some
market index such as the S&P500. The CAPM equation is a linear regression:

β =
Cov(R̃j, R̃m)

Var(R̃m)
.

The CAPM indicates that the expected return of an asset j is given by the risk-free
rate plus a risk premium β(E[Rm]− Rr f ) that depends on the β assigned to j.

An asset that varies closely with the market returns (high β) has high systemic
risk and commands a larger risk premium. Optimally choosing a portfolio allows
an agent to fully diversify idiosyncratic risk, leaving systemic risk reflected in the
expected return of the asset.

CAPM and No-Arbitrage

The expected returns in the CAPM are calculated according to a probability distribu-
tion over states. Let p̂ ∈ ∆, a probability measure on {1, . . . , m}. Then:

qj =
n

∑
i=1

πia
j
i =

n

∑
i=1

π̂i

p̂i
aj

i =
n

∑
i=1

θi p̂ia
j
i = Ep̂[θ̃ ãj],

where θ̃ is a stochastic discount factor.
For any two random variables X̃ and Ỹ, we have:

Covp̂(X̃, Ỹ) = Ep̂[X̃Ỹ]− Ep̂[X̃]Ep̂[Ỹ].

Thus:
qj = Ep̂[θ̃ ãj] = Covp̂(θ̃, ãj) + Ep̂[θ̃]Ep̂[ãj].

Since:
Ep̂[θ̃] = ∑

i
πi = qr f =

1
Rr f ,

we obtain:
Ep̂[R̃j] = Rr f − Covp̂(ν̃, R̃j),

where ν̃ = Rr f θ̃.
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Consumption CAPM

Consider a consumer with income I who can invest in J assets. The random return
on asset j is R̃j. Asset 1 is a risk-free asset.

Let x0 denote the consumption (of money) on date 0. The agent uses I − x0 to
invest in assets for consumption on date 1. Investment in asset j is:

zj = (I − x0)η
j,

where η = (η j)J
j=1 ∈ R

J
+ with ∑j η j = 1.

The random payoff of a portfolio defined by η is:

x̃1 = (I − x0)
J

∑
j=1

η jR̃j,

= (I − x0)

[
R1 +

J

∑
j=2

η j(R̃j − R1)

]
.

The consumer’s problem is:

max u(x0) + δE

[
u

(
(I − x0)

[
R1 +

J

∑
j=2

η j(R̃j − R1)

])]
,

s.t. 0 ≤ x0 ≤ I,

0 ≤ ηj,
J

∑
j=2

η j ≤ 1.

Suppose u : R+ → R is smooth, monotonic, and concave. Also assume interior
solutions. The first-order conditions characterizing the solution are:

u′(x0) = δE[u′(x̃1)R̃], (Euler equation),

where R̃ = R1 + ∑j η j(R̃j − R1), and:

δE[u′(x̃1)(I − x0)(R̃j − R1)] = 0, ∀j = 2, . . . , J.

Since I − x0 > 0,

E[u′(x̃1)(R̃j − R1)] = 0, ∀j = 2, . . . , J.
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Expanding this:

0 = E[u′(x̃1)(R̃j − R1)],

= Cov(u′(x̃1), R̃j − R1) + E[u′(x̃1)]E[R̃j − R1],

= Cov(u′(x̃1), R̃j) + E[u′(x̃1)]E[R̃j − R1].

Thus:
E[R̃j] = R1 − 1

E[u′(x̃1)]
Cov(u′(x̃1), R̃j).

Lucas Tree Model

Now we study the case of a single agent and many goods. Specifically, consumption
occurs over time, and it is uncertain. Endowments are stochastic and arrive over time.
The problem is to characterize prices that support the autarky equilibrium where the
agent consumes their endowment.

There is a single good, "fruit," in each period, and a single asset, "a tree." The tree
pays off "dividends," a random production of fruit in every period. Time is infinite,
ranging from t = 0, 1, . . .. In period t, the production of fruit is realized, and a spot
market opens in fruit. The consumer can sell and purchase fruit in the spot market
and can buy trees. We normalize the price of fruit in each spot market to 1 and
determine the price qt of trees in period t.

In period t, the consumer’s income derives from holding trees and their produc-
tion of fruit. If each tree produces a dividend dt and the agent holds st trees, their
income at period t is:

wt = st(qt + dt).

This income can be used to purchase fruit for consumption ct and trees. If the
agent buys st+1 trees, they spend at = st+1qt. The budget constraint for period t is:

ct + at ≤ wt.

The rate of return on trees is:

Rt+1 =
qt+1 + dt+1

qt
,

composed of a capital gain and a dividend payoff. Note that:

Rt+1at = st+1(qt+1 + dt+1) = wt+1.

The consumer seeks to maximize the expected discounted sum of period utility.
Let u : R+ → R be the utility function, assumed C1, strictly increasing, and concave.
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The discount factor is δ ∈ (0, 1). The maximization problem is:

max E

[
∞

∑
t=0

δtu(ct)

]
,

s.t. ct + at ≤ wt,

wt+1 = Rt+1at.

Assume {Rt} follows a Markov process. The Bellman equation is:

v(w, R) = sup
{

u(c) + δE[v(R̃a, R̃) | R]
}

.

Consider:
max

0≤a≤w

{
u(w − a) + δE[v(R̃a, R̃) | R] : c + a = w

}
.

Assuming the solution is interior and v is differentiable, let ∂v
∂w be denoted v′1. The

first-order condition (FOC) provides:

u′(w − a) = δE[v′1(R̃a, R̃) | R].

By the envelope theorem:

v′1(w, R) = u′(w − a).

Thus:
u′(ct) = δEt[u′(ct+1)Rt+1].

This implies:

1 = Et

 δ
u′(ct+1)

u′(ct)︸ ︷︷ ︸
stochastic discount factor Mt+1

t

Rt+1

 .

Using the definition of Rt+1:

qt = Et

[
δ

u′(ct+1)

u′(ct)
(qt+1 + dt+1)

]
.

By the law of iterated expectations:

Et[qt+1] = Et

[
Et+1[Mt+2

t+1(qt+2 + dt+2)]
]

,

= Et[Mt+2
t+1(qt+2 + dt+2)].

Continuing this fashion:

qt = Et

[
T

∑
τ=1

Mt+τ
t dt+τ

]
+ Et[Mt+T

t qt+T].
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Ruling out bubbles and assuming the monotone convergence theorem:

qt = lim
T→∞

Et

[
T

∑
τ=1

Mt+τ
t dt+τ

]
= Et

[
∞

∑
τ=1

Mt+τ
t dt+τ

]
.

Hence:

qt = Et

[
∞

∑
τ=1

δτ u′(dt+τ)

u′(dt)
dt+τ

]
.
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Appendix: Financial Market Modeling

For this appendix, we make use of basic measure theory and discrete martingales.
The market in this context is defined as the triple

[Ω finite, {Gn}, Mn = (1, Sn), n = 0, 1, 2, . . . , N] ,

with:

1. Ω: the set of all possible states.

2. Gn: filtration.

3. Mn: the vector of assets.

Definition 11. A strategy (portfolio) is defined as

Γn : Ω → R2, n = 1, 2, . . . , N,

such that Γn is Gn−1 measurable for all n = 1, 2, . . . , N.

Definition 12. A strategy Γn is said to be self-financing if

Γn−1 · Mn−1 = Γn · Mn−1, ∀n.

The sample space is
Ω = {ω1, . . . , ωk}.

In the general case, we can have ℓ assets Si
n : Ω → R, i = 1, . . . , ℓ, and the market

state is given by:
Mn : Ω → Rℓ+1,

with:
Mn(ω) = (1, S1

n(ω), . . . , Sℓ
n(ω)).

Alternatively, we can write:

Mn(ω) = (Bn, S1
n(ω), . . . , Sℓ

n(ω)),

where Bn is a non-stochastic asset representing, for example, cash in a bank account.
Given the market, the position of the investor is represented by the vector

Γ = (β, α1, . . . , αℓ),

where the first coordinate β corresponds to the cash position (or the position in the
reference asset Bn, often normalized to Bn = 1), and the remaining ℓ coordinates
represent the position in each risky asset. The sign convention is:

• β > 0: the investor holds |β|Bn units in cash.

• β < 0: the investor owes |β|Bn units to the bank.
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• αi > 0: the investor holds |αi| units of asset i.

• αi < 0: the investor owes |αi| units of asset i.

The value of the portfolio at time n ∈ {0, . . . , N} is denoted by VΓ
n and calculated

as: {
VΓ

0 = Γ1 · M0, the cost of initiating the strategy,

VΓ
n = Γn · Mn, the value of the portfolio at time n.

Proposition 5. If the strategy is self-financing:

VΓ
n = VΓ

0 +
n

∑
j=1

Γj · (Mj − Mj−1),

=
∫ n

0
Γ dM +

∫ n

0
M dΓ︸ ︷︷ ︸
=0

.

Remark. The following properties hold:

VΓ1+Γ2
n = VΓ1

n + VΓ2
n ,

VλΓ
n = λVΓ

n .

Definition 13. A self-financing strategy Γn is said to be an arbitrage opportunity in
the market Mn if:

1. VΓ
0 ≤ 0 (no initial investment).

2. VΓ
N ≥ 0 (risk-free).

3. VΓ
N(ω) > 0 for some ω ∈ Ω.

Definition 14. A market (Mn) is free of arbitrage if there exists no Γn that constitutes
an arbitrage opportunity.

Example 11. Binomial model (s, a, b) with −1 < a. Define Ω = {a, b}N and ρj →
{a, b}, j = 1, . . . , N. The price process Sn : Ω → R is given by:{

S0 = s,

Sn = Sn−1(1 + ρn), n ≥ 1.

Thus, Mn = (1, Sn).

Proposition 6. In the binomial model, the market is free of arbitrage if and only if a < 0 < b.

Proof. If the market is arbitrage-free, it must hold that a < 0 < b. Conversely, if
a < 0 < b, we can construct a risk-neutral probability measure Q.

Proposition 7. Given a market [Ω, Gn, Mn], a probability Q on Ω is called a risk-neutral
probability or equivalent martingale measure (EMM) if (Mn, Gn) is a Q-martingale and
Q(ω) > 0 for all ω ∈ Ω.
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Remark. If Q is a risk-neutral probability, then (VΓ
n , Gn) is a martingale for any self-

financing strategy Γn. Consequently, if Γn is an arbitrage opportunity:

1. VΓ
0 ≤ 0,

2. VΓ
N ≥ 0,

3. VΓ
N(ω) > 0 for some ω,

then, since VΓ
N ≥ 0,

EQ[VΓ
N] = EQ[VΓ

0 ] ≤ 0.

It follows that VΓ
N = 0 Q-a.s., leading to a contradiction. Hence, if Q exists, Mn is

arbitrage-free.

Theorem 2. If |Ω| < ∞ and n = 0, 1, 2, . . . , N, then:

Mn is arbitrage-free ⇔ ∃ Q EMM.

26



References

[1] Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic Theory.
Oxford University Press.

[2] Lugon, A. (2023). Equilibrio, eficiencia e imperfecciones del mercado. Fondo Editorial
PUCP.

[3] Echenique, F. (2015). General Equilibrium SS05 Lecture Notes. Caltech.

27


