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1 Preferences

We mainly follow for this section [1] and [4].

De�nition 1. Given a set X, a preference ⪰ over X is a binary relation such

that, for any x, y ∈ X

x ⪰ y︸ ︷︷ ︸
x is at least as good a y

.

From ⪰ we derive two other important relations on X:1

1. The strict preference relation ≻ de�ned by

x ≻ y︸ ︷︷ ︸
x is preferred to y

⇔ x ⪰ y but not y ⪰ x.

2. The indi�erence relation ∼ de�ned by

x ∼ y︸ ︷︷ ︸
x is indi�erent to y

⇔ x ⪰ y and y ⪰ x.

De�nition 2. We say that ⪰ is rational if it is

1. Complete: ∀ x, y ∈ X, x ⪰ y or y ⪰ x.

2. Transitive: if x ⪰ y and y ⪰ z, then x ⪰ z.

1. Prove that if ⪰ is rational, then

1. ≻ is both irre�exive (x ≻ x never holds) and transitive (x ≻ y and y ≻ z

imply x ≻ z).

2. ∼ is re�exive (x ∼ x for all x) and transitive (x ∼ y and y ∼ z imply

x ∼ z).

3. x ≻ y ⪰ z then x ≻ z.

De�nition 3. A function u : X → R is a utility function representing the

1Some sources, such as Federico Echenique's lecture notes, start de�ning a binary relation

and call a preference relation a complete and transitive binary relation.
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preference relation ⪰ if for all x, y ∈ X

x ⪰ y ⇔ u(x) ≥ u(y).

Note that a utility function that represent ⪰ is not unique. Given any strictly

increasing function f : R → R, v(x) = f(u(x)) is a new utility function repre-

senting the same preference. You may prove this.

2. Prove that a preference ⪰ can be represented by a utility function only if it

is rational.

3. If u represents ⪰ and f is just increasing (not strictly), does f◦u is necessarily

a utility function representing ⪰?

4. Consider a rational preference relation ⪰. Show that if u(x) = u(y) implies

x ∼ y and u(x) > u(y) implies x ≻ y, then u represents ⪰.

5. Propose a function that represents the preferences of the following statement:

A person never eats bread alone, he always accompany it with jam, but when

there is no jam, he uses butter.

6. Prove that the lexicographic preference is rational.

Remark. It is important to note how useful it is to have a representation

through a utility function. Thanks to these, we can ground abstract information

to the real line and perform analysis, (and potentially calculus) on it. Later, we

will see when it can be ensured that a utility function is related to another utility

function. This is not always possible. For example, lexicographic preferences

cannot be represented by a utility function. Broadly speaking, the issue is that

the information contained in the lexicographic preference relation is too vast to

be stored in R; the cardinalities of the in�nities involved are not compatible.

De�nition 4. he preference relation ⪰ is monotone on X ⊂ RL if x ∈ X and

y > x (strict inequality in each entry) implies y ≻ x. It is strongly monotone if

y ≥ x, y ̸= x implies y ≻ x.

7. Prove that, if u : RL
+ → R, C1, represents ≻ and ≻ is strongly monotone,

then ∂u
∂xi

> 0.
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De�nition 5. The preference relation on X, ⪰ is locally nonsatiated if for every

x ∈ X and every ε > 0, there is y ∈ X such that ||y − x|| ≤ ε and y ≻ x.

8. Prove that if ⪰ is monotone, then it is locally nonsatiated.

De�nition 6. Given the preference relation ⪰ and a consumption bundle x,

we can de�ne three related sets of consumptions bundles. The indi�erence

set containing point x is the set {y ∈ X : x ∼ y}. The upper contour is

{y ∈ X : y ⪰ x} and the lower contour is {y ∈ X : x ⪰ y}.

De�nition 7. The preference relation ⪰ on X is convex if for every x ∈ X the

upper contour set {y ∈ X : y ⪰ x} is convex: that is, y ⪰ x, z ⪰ x, then

θy + (1− θ)z ⪰ x, ∀ θ ∈ [0, 1].

9. Prove that if ⪰ is convex and u represents ⪰, then u is quasi-concave.

De�nition 8. The preference relation ⪰ on X is strictly convex if for every

x, y, z ∈ X such that y ⪰ x, z ⪰ x, then

θy + (1− θ)z ≻ x, ∀ θ ∈ [0, 1].

De�nition 9. A monotone preference relation ⪰ on X = RL
+ is homothetic if

all indi�erence sets are related by proportional expansion along rays: that is, if

x ∼ y then αx ∼ αy for all α ≥ 0.

De�nition 10. The preference relation ⪰ on

X = (−∞,∞)× RL−1
+

is quasilinear with respect to commodity 1 if

1. All the indi�erence sets are parallel displacement of each other along the

axis of commodity 1. That is, x ∼ y then x + αe1 ∼ y + αe1, e1 =

(1, 0, · · · , 0), and any α ∈ R.

2. Good 1 is desirable: x+ αe1 ≻ x for all x and α > 0.

Remark. From now, we assume that all preferences are rational.
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De�nition 11. The preference relation ⪰ on X is continuous if it is preserved

under limits. That is, for any sequence of pairs {(xn, yn)}n∈N with xn ⪰ yn, for

all n ∈ N, x = limn x
n, y = limn y

n, we have x ⪰ y.

10. Not easy: prove that ⪰ is continuous if and only if {y ∈ X : x ⪰ y} is

closed.

11. De�ne the Lexicographic preference. Prove that it is not continuous.

Hint: consider (1/n, 0, ..., 0) and (0, 1 + 1/n, 0, ..., 0).

Theorem 12. Suppose a rational preference relation on X is continuous. Then,

there is a continuous utility function u(x) that represents ⪰.

Proof. See [4] or [6]

Remark. Di�erentiability if a much more complicated matter. See a discussion

in [1] and think about Leontief preferences:

(x1, x2) ⪰ (y1, y2) ⇔ min{x1, x2} ≥ min{y1, y2}.

12. Consider a continuous preference relation ⪰ over X = RL
+ (R × RL−1

+

respectively). Prove that

1. ⪰ is homothetic if and only if it admits a utility function u(x) that is

homogeneous of degree one: u(αx) = αu(x).

2. ⪰ is quasi-linear with respect to the �rst commodity if and only if it admits

a utility function u(x) of the form

u(x1, · · · , xn) = x1 + ϕ(x2, · · · , xL).

13. Provide an example of

1. A utility function representing a locally satiated preference.

2. A non complete binary relation (you can use any X).

3. A non transitive binary relation (you can use any X).

4. A non convex preference relation.
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2 Consumer Theory

We mainly follow for this section [1] and [4].

The number of commodities will be L and will be indexed by ℓ = 1, ..., L. A

commodity vector is x = [x1, · · · , xL]
T ∈ RL

+.

De�nition 13. Consumption set:

X = RL
+ = {x ∈ RL : xℓ ≥ 0, ∀ ℓ = 1, ..., L}.

1. Prove that X is convex.

2. Explain why the �classical� budget set is given by

B(p, w) =

{
x ∈ RL

+ : p · x =

L∑
ℓ=1

pℓxℓ ≤ w

}
.

Here p ∈ RL
++ is the price of the commodities and I the income. Note: B(p, w)

is also known as Walrasian set.

3. Draw the Walrasian set for

a) w = 2, p1 = 1, p2 = 4.

b) w = 1, p1 = p2 = 2 and p3 = 5.

4. Prove that the Walrasian set is convex2 and compact3.

De�nition 14. The consumer's Walrasian (or ordinary) demand correspon-

dence4 x(p, w) assigns a set of chosen consumption bundles for each price-wealth

pair (p, w).

De�nition 15. A Walrasian demand correspondence x(p, w) is homogeneous

of degree one if x(αp, αw) = x(p, w) for any p, w and α > 0.

From now, unless we specify the contrary, we assume that preferences are

represented by utility functions. Thus,

x(p, w) = argmaxpẋ≤w, x≥0 u(x).
2∀ x1, x2 ∈ B(p, w) and θ ∈ [0, 1], θx1 + (1− θ)x2 ∈ B(p, w).
3Closed and bounded under the usual topology of RL. See [4].
4A correspondence is a �point to set� map. This is, Γ : X → Y is a correspondence if for

6



De�nition 16. A Walrasian demand correspondence x(p, w) satis�es Walras

Law if p · x = I for every x ∈ x(p, w).

5. Prove that, if ⪰ is locally non satiated, then x(p, w) satis�es Walras Law.

6. Suppose L = 3 and

x1(p, I) =
p2∑3
i=1 pi

w

p1

x2(p, I) =
p3∑3
i=1 pi

w

p2

x3(p, I) =
βp1∑3
i=1 pi

w

p3
.

Analyze for which values of β ∈ [0, 1] the Walrasian demand satis�es Walras

Law and degree zero homogeneity.

The wealth e�ect is represented as follows

Dwx(p, w) =


∂x1(p,w)

∂w
∂x1(p,w)

∂w
...

∂x1(p,w)
∂w

 ∈ RL.

On the other hand, the price e�ects, conveniently represented through a matrix,

is

Dpx(p, w) =



∂x1(p,w)
∂p1

∂x1(p,w)
∂p2

· · · ∂x1(p,w)
∂pL

∂x2(p,w)
∂p1

∂x2(p,w)
∂p2

...
...

. . .
...

∂xL(p,w)
∂p1

· · · ∂xL(p,w)
∂pL

 .

Proposition 17. If the Walrasian demand function x(p, w) is homogeneous of

degree zero, then for all p and w, assuming di�erentiability,

L∑
k=1

∂xℓ(p, w)

∂pk
pk +

∂xℓ(p, w)

∂w
w = 0, ∀ ℓ = 1, ..., L. (1)

In matrix notation,

Dpx(p, w)p+Dwx(p, w)w = 0.
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Remark. Equation 1 means that increasing all prices (both good prices and

wealth), summing and weighting with the prices, gives zero: no e�ect.

7. Prove (1).

Hint: di�erentiate with respect to α: x(p, w) = x(αp, αw).

Now, de�ne

εℓk(p, w) =
∂xℓ(p, w)

∂pk

pk
xℓ(p, w)

(2)

εℓw(p, w) =
∂xℓ(p, w)

∂w

w

xℓ(p, w)
. (3)

These are elasticities, which give the percentage change in demand for good

ℓ per (marginal) percentage change in the price of good k (or wealth for the

second equation). Recall that

εℓw =
∆x

x

w

∆w
.

8. Using elasticities, re-escribe (1).

Proposition 18. If the Walrasian demand function x(p, w) satis�es Walras

law, then for all p, w

L∑
ℓ=1

pℓ
xℓ(p, w)

∂pk
+ xk(p, w) = 0, ∀ k = 1, ..., L. (4)

9. Derive Equation 4, also known as Cournot aggregation. Interpret5.

Hint: derive p · x = w with respect to pk.

10. Prove Euler aggregation equation:

L∑
ℓ=1

pℓ
∂xℓ

∂w
= 1.

Hint: derive p · x = w with respect to w.

every x ∈ X, Γ(x) ∈ 2Y .
5Total expenditure can change in response to a change in prices?
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3 Weak Axiom of Revealed Preference (WARP)

De�nition 19. The Walrasian demand function6 x(p, w) satis�es the weak

axiom of revealed preference if the following property holds for any two prices-

wealth situations (p, w) and (p′, w′)

p · x(p′, w′) ≤ w and x(p′, w′) ̸= x(p, w) =⇒ p′ · x(p, w) > w′. (5)

1. Interpret (5). Note that x(p′, w′) was available for the price-wealth con�g-

uration (p, w) and was not chosen. Hence, if we have p′x(p, w) ≤ w′, x(p, w) is

available, and so is x(p′, w′): it is logical to chose x(p′, w′)?.

WARP has signi�cant implications for the e�ects of price changes on de-

mand. Note that price changes a�ect the consume in two ways. First, they

alter the relative cost of di�erent commodities. But, second, they also change

consumer's real wealth.

Proposition 20. Suppose thaty the Walrasian demand function x(p, w) is

homogeneous of degree zero and satis�es Walras law. Then, x(p, w) satis�es

the weak axiom if and only if the following property holds: for any compen-

sated price change from an initial situation (p, w) to a new price-wealth pair

(p′, w′) = (p′, p′ · x(p, w)), we have

(p′ − p)[x(p′, w′)− x(p, w)] ≤ 0.

2. Prove Proposition 20.

3. Consider the consumption of a consumer in two di�erent periods, period

0 and period 1. Period t prices, wealth and consumption are pt, wt, xt(pt, wt).

The Laspeyres quantity index computes the change in quantity using period 0

prices as weights:

LQ =
p0 · x1

p0 · x0

while Paasche quantity index wieghts using prices in period 1:

PQ =
p1 · x1

p1 · x0
.

Finally, the consumer's expenditure change is just EQ = p1·x1

p0·x0 .

6Let us assume for simplicity that we deal with functions and no with correspondences.
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1. Prove that, if LQ < 1, then the consumers reveals preference for x0 over

x1.

2. Prove that, if PQ > 1, then the consumers reveals preference for x1 over

x0.

3. We cannot conclude if EQ < 1 or EQ > 1 (not enough information).

4. Consider the following Walrasian demand:

xk(p, w) =
w∑L
ℓ=1 pℓ

, ℓ = k, ..., L.

Awnser the following item:

1. Is the demand homogeneous of degree 0 in (p, w)?

2. Does it satis�es Walras Law?

3. Does it satis�es WARP?
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4 Classical Demand Theory

4.1 Utility maximization problem

We mainly follow for this section [1], [2] and [4]. Now we study in detail the

famous and very important utility maximization problem:

Pu :


max u(x)

s.t. p · x ≤ w

x ≥ 0.

The problem Pu will be referred as UMP.

1. Prove that, if u is continuous, Pu posses always a solution.

2. Explain carefully Pu.

3. For L = 2, p1 = p2 = 1 and I = 10, solve the problem if u(x1, x2) = x1+2x2.

4. Assume that u(·) is di�erentiable. Prove that, if x∗ is a solution to Pu,

∇u(x∗) ≤ λp

x∗[∇u(x∗)− λp] = 0

form some λ ≥ 0, When ∇u(x∗) =≤ λp?.

De�nition 21. The Walrasian Demand Correspondence Function. The

rule that assigns the set of optimal consumption vectors in the UMP to each

price-wealth situation (p, w) > 0 is denoted by x(p, w) ∈ RL
+ and is known as

the Walrasian demand correspondence.

Proposition 22. Suppose that u(·) is a continuous utility function represent-

ing a locally nonsatiated preference relation ⪰ de�ned on the consumption set

X = RL
+. Then, the Walrasian demand correspondence x(p, w) possesses the

following properties:

1. Homogeneity of degree zero in (p, w): x(αp, αw) = x(p, w) for any p, w

and scalar α > 0.

2. Walras law: p · x = w, for all x ∈ x(p, w).
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3. Convexity/uniqueness: if ⪰ is convex, so that u(·) is quasi-concave, then
x(p, w) is convex. Moreover, if u is strictly quasi-concave, x(p, w) has a

single element (unique solution).

10. Prove Proposition 22.

11. Prove that if u(·) satis�es Inada conditions, x∗
ℓ > 0.

12. Solve the UMP for

u(x1, x2) = α lnx1 + (1− α) lnx2, α ∈ (0, 1).

13. Prove that if x∗
ℓ > 0 for all ℓ = 1, ..., L, the optimality condition is

∂u(x∗)
∂xℓ

∂u(x∗)
∂xk

=
pℓ
pk

.

14. De�ne

v(p, w) = max
x≥0, p·x≤w

u(x).

Prove that the indirect utility function v : RL
++ × R+ satis�es the following

properties

a) Homogeneous of degree zero.

b) Strictly increasing in w and non increasing in pℓ.

c) Quasi-convex: {(p, w) : v(p, w) ≤ v} is convex for all v.

d) Continuous in p, w.

For (d) you may require a strong result known as Maximum Theorem. See [7].

15. Solve the UMP, given a price vector p > 0 and wealth w > 0 for

1. u(x) =
∑n

i=1 xi.

2. u(x) =
∏n

i=1(xi − ai)
αi , αi, ai > 0 (Stone-Geary).

3. u(x) =
∑n

i=1 αix
ρ
i , ρ ∈ (0, 1), αi > 0.

4. u(x) = min
{

x1

a1
, · · · , xn

an

}
, ai > 0.

5. u(x1, x2) = x1 + lnx2.
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4.2 Expenditure minimization problem

Analogous to the UMP, we have the Expenditure Minimization Problem (EMP)

Pe :


min p · x

s.t. u(x) ≥ u

x ≥ 0.

Proposition 23. Suppose that u(·) is a continuous utility function representing
a locally nonsatiated preference relation ⪰ de�ned on the consumption set X =

RL
+ and that the price vector is p > 0. Thus, de�ning the expenditure function

e = e(p, u) = minu(x)≥u p · x:

1. If x∗ is the optimal in the UMP when w > 0, then x∗ is optimal in the

EMP when u = u(x∗). Moreover, e(p, u) = w.

2. If x∗ is optimal in the EMP when the required utility level is u > u(0),

then x∗ is optimal in the UMP when w = p · x∗. Moreover, v(p, w) = u.

1. Prove Proposition 23.

Proposition 24. Suppose u(·) is a continuous utility function representing a

locally nonsatiated preference relation ⪰ de�ned on the consumption set X =

RL
+. Then, the expenditure function is

1. Homogeneous of degree one un p.

2. Strictly increasing in u and nondecreasing in pℓ for any ℓ = 1, ..., L.

3. Concave in p.

4. Continuous in p and u.

2. Prove Proposition 24.

Remark. It follows from our previous discussion that

e(p, v(p, w)) = w and v(p, e(p, u)) = u.
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De�nition 25. The Hicksian Compensated Demand is the set of optimal bun-

dles in the EMP. It is denotes h(p, u):

h(p, u) = argminu(x)≥u p · x.

Proposition 26. Suppose that u(·) is a continuous utility function representing
a locally nonsatiated preference relation ⪰ de�ned on the consumption set X =

RL
+. Then, for any p > 0, the Hicksian demand correspondence h(p, u) possesses

the following properties:

1. Homogeneity of degree zero in p: h(αp, u) = h(p, u) for all α > 0 and for

any p, u.

2. No excess utility: for any x ∈ h(p, u), u(x) = u.

3. Convexity/uniqueness: if ⪰ is convex, then h(p, u) is a convex set. If ⪰ is

strictly convex, then there is a unique element in h(p, u).

3. Prove Proposition 26.

4. Show that the FOC for the EMP are

p− λ∇u(x∗) ≥ 0 ∧ x∗[p− λu(x∗)] = 0,

for some λ ≥ 0.

Remark. From our previous discussion, it follows that

h(p, u) = x(p, e(p, u))

and

h(p, v(p, w)) = x(p, w).

5. Solve the EMP for u(x1, x2) = xα
1x

1−α
2 , α ∈ (0, 1). Obtain the expenditure

function.

Proposition 27. Compensated law of demand. Suppose that u(·) is a

continuous utility function representing a locally nonsatiated preference relation

⪰ and h(p, u) consists of a single element for all p > 0. Then, the Hicksian

demand function h(p, u) satis�es the compensated law of demand:

∀ p′, p′′ : (p′ − p′′) · (h(p′′, u)− h(p′, u)) ≤ 0.
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6. Prove Proposition 27. Hint: note that

p′′h(p′′, u) ≤ p′′h(p′, u)

p′h(p′, u) ≤ p′h(p′′, u).

Proposition 27 tells us that increasing the price of ℓ leads a decrease in hℓ.

The following results are classical in consumer theory and have analogous results

in producer theory. Their proof uses the classical Envelope Theorem [4].

Lemma 28. Shepard's Lema. Suppose that u(·) is a continuous utility func-

tion representing a preference locally non satiated and strictly convex preference

relation ⪰ de�ned on X = RL
+. For all p and u, the Hicksian demand h(p, u)

and the expenditure function satis�es the following relation

h(p, u) = ∇pe(p, u).

7. Prove Shepard's Lemma.

Hint: Shepard's Lema consists on proving

∂e(p, u)

∂pℓ
= hℓ(p, u), ∀ ℓ = 1, ..., L.

Proposition 29. Suppose that u(·) is a continuous utility function representing
a locally nonsatiated and strictly convex preference relation ⪰ de�ned on the

consumption setX = RL
+. Suppose also that h(·, u) is continuously di�erentiable

at (p, u) and denote its L× L Jacobian matriz by Dph(p, u). Then,

1. Dph(p, u) = D2
pe(p, u).

2. Dph(p, u) is negative semide�nite matrix.

3. Dph(p, u) is a symmetric matrix.

4. Dph(p, u)p = 0.

8. Prove Proposition 29. Hint: use Shepard's Lema.
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Proposition 30. Slutsky Equation. Suppose that u(·) is a continuous util-

ity function representing a locally nonsatiated and strictly convex preference

relation ⪰ de�ned on the consumption set X = RL
+. Then, for all (p, w) and

u = v(p, w) we have

∂hℓ(p, u)

∂pk
=

∂xℓ(p, w)

∂pk︸ ︷︷ ︸
price e�ect

+
∂xℓ(p, w)

∂w
xk(p, w)︸ ︷︷ ︸

income e�ect

, ∀ ℓ, k.

9. Obtain Slutsky Equation and interpret. Hint: set h(p, u) = x(p, e(p, u)).

De�nition 31. Substitution E�ect: this captures how the quantity de-

manded of a good changes as consumers switch away from goods that have

become relatively more expensive towards those that are relatively cheaper,

holding utility constant (i.e., the change in consumption that would occur if the

consumer were compensated to keep their original level of utility).

Income E�ect: this re�ects how the quantity demanded changes in response

to a change in purchasing power caused by the price change, holding prices

constant.

De�nition 32. A good xℓ is a Gi�en good if ∂xℓ

∂pℓ
> 0 and pℓ ↓ leads to xℓ ↓.

An inferior good xk is a good such that ∂xk

∂w < 0.

Another result derived from the Envelope Theorem is the following.

Proposition 33. Roy's identity. Suppose that u(·) is a continuous utility

function representing a locally nonsatiated and strictly convex preference rela-

tion ⪰ de�ned on the consumption set X = RL
+. Suppose also that the indirect

utility function is di�erentiable at (p, w) > 0. Then

x(p, w) = − 1

∇wv(p, w)
∇pv(p, w).

This is,

xℓ(p, w) = − 1
∂v(p,w)

∂w

∂v(p, w)

∂p
.

10. Prove Roy's identity. Use the Envelope Theorem.
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Let us assume that the purpose is to recover a preference relation from (by

means of) e(p, u). More recent work address this issue from a more advanced

framework. See Recovering preferences from �nite data. For each utility level u

let Vu ⊂ RL be an at-least-as-good set such that e(p, u) is the minimal expendi-

ture required for the consumer to purchase a bundle in Vu at prices p > 0. This

is

e(p, u) = min
x≥0

p · x

x ∈ Vu.

Proposition 34. Suppose that e(p, u) is strictly increasing in u and is con-

tinuous increasing, homogeneous of degree one, concave and di�erentiable in p.

Then, for every utility level u,

Vu = {x ∈ RL
+ : p · x ≥ e(p, u), ∀ p > 0}.

Remark. The following system of partial di�erential equations is derived using

Shepard's Lemma:

∂e(p)

∂p1
= x1(p, e(p))

...

∂e(p)

∂pL
= xL(p, e(p)),

for initial conditions p0 and e(p0) = w0.

11. Explain why in order to ensure a solution to the PDE system presented

right before it is required to S(p, e(p)) to be symmetric.
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4.3 Welfare analysis

Hereafter, we consider a consumer with a rational preference relation ⪰. When-

ever it is convenient, it will be assumed that both the indirect utility and expen-

diture function are di�erentiable. In a �rst stage, we assume that a consumer

has a �xed wealth w > 0 and faces prices p0. Then, prices change to p1. The

invidiously is worse when

v(p1, w)− v(p0, w) < 0.

Now, e(p, v(p, w)) is the wealth required to achieves a utility level e(p, v(p, w))

when prices are p. Hence,

e(p, v(p1, w))− e(p, v(p0, w))

provides a measure of welfare change expressed in monetary units.

A money metric indirect utility function can be constructed in this manner

for any price vector p > 0. Let u0 = v(p0, w) and u1 = v(p1, w), and note that

e(p0, u0) = e(p1, w1). We de�ne the equivalent variation and the compensated

variation.

EV (p0, p1, w) = e(p0, u1)− e(p0, u0) = e(p0, u1)− w

CV (p0, p1, w) = e(p1, u1)− e(p1, u0) = w − e(p1, u0).

In the equivalent variation, we work with initial prices, and in the compensated

variation, we work with �nal prices. The equivalence variation is the u.m.

amount that the consumer would be indi�erent about accepting in lieu of the

price change: that is, it is the change in the wealth that would be equivalent to

the price change in terms of its welfare impact. Therefore, it is negative if the

price change would make the consumer worse o�). Thus,

v(p0, w + EV ) = u1 = v(p1, w).

Compensated variation on the other hand measures the net revenue of a planner

who must compensate the consumer for the price change after it occurs, bringing

the consumers utility level to the original u0. Hence, the compensating variation
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is negative if the planner would have to pay the consumer a positive level of

compensation because the price change makes the individual worse o�. Hence,

v(p1, w − CV ) = u0.

24. Prove that if only price of the good 1 changes,

EV (p0, p1, w) =

∫ p0
1

p1
1

h1(p1, p−1, u
1)dp1.

Hint: e(p0, u1)− e(p0, u0) = e(p0, u1)− w = e(p0, u1)− e(p1, u1).

24. Prove that if only price of the good 1 changes,

CV (p0, p1, w) =

∫ p0
1

p1
1

h1(p1, p−1, u
0)dp1.

Hint: e(p1, u1)− e(p1, u0) = w − e(p1, u0) = e(p0, u0)− e(p1, u0).
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5 Additional exercises

1. Following Consumer's Surplus, Price Instability, and Consumer Welfare,

prove, using the indirect utility function (and Roy's identity), that it is only

convenient to stabilize a price if:

εxpx + sx(εxw − rr) < 0.

� High risk aversion (volatility or low income).

� Low wealth elasticity (necessary good).

� Share not low.

� Price elasticity is low.

2. Prove that the sum of elasticities is zero for the following demand functions:

x(p1, p2, w) =
αw

p1

x(p1, p2, w) =
αw

(ap1 + bp2)
.

3. Consider the following utility function

u(x1, x2) = x0.5
1 + x0.5

2 .

a) Find the ordinary demands, indirect utility function and the expenditure

function.

b) If initial prices are (p01 = p02 = 2) but then p11 = 3 (keeping p12 = 2

and considering w = 100) �nd the compensated variation and equivalent

variation.

4. Prove that if u : R2 → R, is C2 and quasi-concave, the MRS
ux1

ux2
is decreasing.

5. Establish the following two results:

1. A continuous ⪰ is homothetic if and only if it admits a utility function

u(x) that is homogeneous of degree one, i.e., u(αx) = αu(x), for all α > 0.
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2. A continuous ⪰ on R × RL−1
+ is quasi-linear with respect to the �rst

commodity if and only if it admits a utility function u(x) of the form

x1 + ϕ(x2, ..., xL−1).

6. Suppose that in a two commodity world, the consumer's utility function

takes the form

u(x) = [α1x
ρ
1 + α2x

ρ
2]

1/ρ, ρ ̸= 0, αi > 0. (6)

This is, a constant elasticity substitution utility function (CES). Prove the fol-

lowing:

a) When ρ = 1, the utility becomes linear.

b) When ρ → 0, the utility comes to present the same preferences as the

Cobb-Douglas utility function u(x) = xα1
1 xα2

2 .

c) When ρ → −∞, the utility comes to present the same preferences as the

Leontief utility function min{x1, x2}.

Try to generalize this result for �the L commodities world�.

7. Consider the CES utility function (6) with α1 = α2 = 1.

a) Compute the Walrasian demand an indirect utility function.

b) Compute the Hicksian demand and expenditure function.

c) Check if Shepard's Lema and Roy's identity are satis�ed.

d) Prove that the elasticity of substitution7 between goods 1 and 2, de�ned

as

ξ1,2(p, w) = −∂[x1(p, w)/x2(p, w)]

∂[p1/p2]

p1/p2
x1(p, w)/x2(p, w)

if for the CES utility function 1
1−ρ .

7Given an original allocation/combination and a speci�c substitution on allocation/com-

bination for the original one, the larger the magnitude of the elasticity of substitution (the

marginal rate of substitution elasticity of the relative allocation) means the more likely to

substitute. It measures the curvature of an indi�erence curve. Since MRS = p1/p2, ξ12 =
d ln(x2/x1)
d ln(p1/p2)

.
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e) Compute ξ12 for the linear, Leontief and Cobb-Douglas utility function.

8. Consider the Stone-Geary utility function

u(x) =

n∏
i=1

(xi − ai)
αi , ai > 0, αi > 0.

Obtain the Walrasian demand, indirect utility and verify Roy's identity.

Hint: you may want to use ln(u(x)).

9. A utility function u(x) is additively separable if it has the form

u(x) =

L∑
ℓ=1

uℓ(xℓ)

a) Show that additive separability is a cardinal property that is preserved

only by linear transformations of the utility function.

b) Show that the induced ordering on any group of commodities is indepen-

dent of whatever �xed values we attach to the remaining ones.

c) Show that the Walrasian and Hicksian demand function generated by an

additively separable utility function admit no inferior good8 if the func-

tions uℓ(·) are strictly concave. Assume di�erentiability and interior solu-

tions.

10. Consider the following (intertemporal) utility function

u(x) =

T∑
t=1

βt√xt.

1. For β = 1, obtain the Walrasian demand and the indirect utility function.

Assume p1 = p2 = · · · = pT = 1 and I = 1.

2. For β ∈ (0, 1), prove that

x∗
t =

δt(1− δ2)

1− δ2(T+1)
.

Assume again p1 = p2 = · · · = pT = 1 and I = 1.

8The demand drops when income rises.
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11. By means of comparative statics, with respect to the utility maximization

problem

max u(x1, x2)

s.t. p1x1 + p2x2 ≤ w

x1, x2 ≥ 0

obtain
∂x1

∂w
.

You may assume that preferences are monotone and u ∈ C2. Hint: recall

Cramer's rule and see [4].

12. With respect to the expenditure minimization problem for two goods, �nd

by means of comparative statics
∂x1

∂p1
.

Is it true that the substitution e�ect is always negative? You may assume that

preferences are monotone and u ∈ C2.

13. Consider the following expenditure function

e(p, u) = exp

{
L∑

ℓ=1

αℓ ln(pℓ) +

(
L∏

ℓ=1

pβℓ

ℓ

)
u

}
.

a) What restrictions on α1, ..., αL, β1, ..., βL are necessary for this to be deriv-

able from the expenditure minimization problem?

b) Find the indirect utility function that corresponds to it. Hint: use duality

theorems.

c) Verify Roy's Identity.

14. Consider the following utility function u(x1, x2) = x2
1 + x2

2.

a) Draw the indi�erence curves and analyze if u is quasi-concave.

b) Find the Marshallian and Hicksian demand.

c) Is Slutzky equation satis�ed? Interpret.
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15. Assume that

u(x) =

n∑
i=1

fi(xi)

is strictly quasi-concave and f ′
i(xi) > 0 for all i. Assume that p > 0, w > 0 and

x(p, w) > 09.

1. Prove that if for some good ℓ, ∂2u
∂x2

ℓ
> 0, then ∂2u

∂x2
k
< 0 for k ̸= ℓ.

2. Prove that xℓ is a normal good and xk an inferior good.

3. Prove that, if ∂2u
∂x2

ℓ
< 0 for all ℓ, then all goods are normal.

16. Prove that if preferences are quasi-linear with respect to the �rst good,

then the hicksian demand of goods ℓ = 2, ..., L does not depend on u.

17. Prove that if preferences are quasi-linear, the Hicksian demand is equal to

the Walrasian demand. Conclude that in a two world economy where only the

price of good 1 changes,

CV =

∫ p1
1

p0
1

x∗
1(p1, p2, w)dp1.

18. A consumer has the following indirect utility function

v(p1, p2, w) =
w

min{p1, p2}
.

Find the expenditure function, the utility function and the Walrasian demand

of good 1. Do the same for

v(p1, p2, w) =
w

p1 + p2
.

9Here we use the notation x > y for xk > yk for all k.
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6 Producer Theory

We follow again [1]. A input-output production plan is a vector y = (y1, ..., yL) ∈
RL that describes the (net) outputs of the L commodities from a production

function.

Example 35. Suppose that L = 5, then

y = (−5, 2,−6, 3, 0)

means that 2 and 3 units of goods 2 and 4, respectively are produced, while 5

and 6 units of goods 1 and 3, respectively, are used. Good 5 is neither used as

an input or produced in this production vector.

We need to identify which production vectors are technologically possible,

i.e., plans that belong to the production set Y ⊂ RL, known as technology. Any

y ∈ Y is possible and y ̸∈ Y is not. Sometimes, it is convenient to write Y by

means of a production function F (·), called the transformation function. This

function has the property that

Y = {y ∈ RL : F (y) ≤ 0}

and F (y) = 0 if and only if y ∈ ∂Y . The set of boundary points of Y

{y ∈ Y : F (y) = 0}.

If F (·) is di�erentiable, and if the production vector y is such that F (y) = 0,

Then, for all ℓ and k

MRTℓk(y) =

∂F (y)
∂yℓ

∂F (y)
∂yk

.

This is, the MRT of good ℓ for good k at y.

One of the most frequently encountered production models is that in which

there is a single output. A single output technology is commonly described

by means of a production function f(z) that gives the maximum amount q of

output that can be produced using inputs amount (z1, ..., zL−1) ≥ 0. Hence

Y = {(−z1, ...,−zL−1, q) : q ≤ f(z1, ..., zL−1), (z1, ..., zL−1) ≥ 0}.

Hereafter some important de�nitions regarding production sets:
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1. Y is nonempty.

2. Y is closed: the set includes its boundary. In terms of sequences, yn ∈ Y ,

yn → y, then y ∈ Y .

3. No free lunch: if y ∈ Y and y ≥ 0, then y = 0.

4. Possibility of inaction: 0 ∈ Y .

5. Free disposal: if y ∈ Y and y′ ≤ y, then y′ ∈ Y . This means that it is

possible to produce with the same amount of inputs less output.

6. Irreversibility: suppose y ∈ Y and y ̸= 0. Then the irreversibility says

that −y ∈ Y .

7. Nonincreasing returns to scale: ∀ y ∈ Y , α ∈ Y for all scalars α ∈ [0, 1].

8. Nondecreasing returns to scale: ∀ y ∈ Y , α ∈ Y for all scalars α ≥ 1.

9. Constant returns to scale: Y is a cone, i.e., ∀ y ∈ Y , and α ≥ 0, αy ∈ Y .

10. Additive (or free entry): if y ∈ Y and y′ ∈ Y , then y + y′ ∈ Y . More

succintly, Y + Y ⊂ Y . This means for instance that for any k ∈ N, and

y ∈ Y , ky ∈ Y .

11. Convexity: Y is convex.

1. Suppose that f(·) is the production associated with a single-output technol-

ogy and let Y be the production set of this technology. Show that Y satis�es

constant returns to scale i� f(·) is homogeneous of degree one.

2. Show that for a single output technology, Y is convex i� the production

function f(z) is concave.

3. Prove that the production set Y is additive and satis�es nonincreasing returns

conditions i� it is a convex cone.

4. Prove that if Y is convex, additive, closed, and −RL
+ ⊂ Y , then Y exhibit

the property of free disposal.

Hint: for any y′ ≤ y, you can write y′ = y + v with v ∈ −RL
+. Then, you

can take

nv
1

n
+

(
1− 1

n

)
y ∈ Y.
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Now, let us study the pro�t maximization and cost minimization prob-

lem.

The pro�t maximization problem is the following: given a price vector p > 0

and a production vector y ∈ Y , the pro�t generated by implementing y is

p · y =
∑L

ℓ=1 pℓyℓ. By the sign convention, this is precisely the total revenue

minus the total cost. Given the technological constraints represented by its

production set Y , the �rm solves

max p · y

s.t. y ∈ Y.

Eventually, when possible, using a transformation function, this is

max p · y

s.t. F (y) ≤ 0.

The optimum

5. Prove that, if Y exhibits nondecreasing returns to scale, then either π(p) ≤ 0

or π(p) = ∞.

If the transformation function is di�erentiable, then the FOC provides

pℓ = λ
∂F (y∗)

∂yℓ
, ℓ = 1, ..., L,

or equivalently,

p = λ∇F (y∗).

Remark. When there is a single output, the �rm solves,

max
z≥0

pf(z)− w · z.

Hence, if z∗ is optimal, by FOC (Karush-Kuhn-Tucker),

p
∂f(z∗)

∂zℓ
≤ wℓ,

with equality if z∗ℓ ≥ 0.
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Proposition 36. Suppose that π(·) if the pro�t function10 and that y(·) is the
associated supply correspondence. Assume also that Y is closed and satis�es

free disposal property. Then,

1. π(·) is homogeneous of degree one.

2. π(·) is convex.

3. If Y is convex then Y = {y ∈ RL : p · y ≤ π(p), ∀ p > 0}.

4. y(·) is homogeneous of degree zero.

5. If Y is convex, then y(p) is a convex set for all p. Moreover, if Y is strictly

convex, then y(p) is single-valued, if non-empty.

6. If y(p) consistes of a single point, then π(·) is di�erentiable at p and

∇π(p) = y(p).

This is known as Hotelling's Lema.

7. If y(·) is a di�erentiable function at p, thenDy(p) = D2π(p) is a symmetric

and positive semi-de�nite matrix with Dy(p)p = 0.

6. Prove Proposition 36.

Now we move to the cost minimization problem. Given a price of inputs

w > 0, a production level q > 0 and a production function f(·), the �rm solves

min w · z

s. t. f(z) ≥ q.

The optimized value of the CMP is given by the cost function c(w, q). First

order conditions provide

wℓ ≥ λ
∂f(z∗)

∂zℓ
, z∗ℓ > 0,

for some λ ≥ 0 and ℓ = 1, ..., L.

10maxy∈Y p · y.
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Proposition 37. Suppose that c(w, q) is the cost function of the single-output

technology Y with production function f(·) and that z(w, q) is the associated

conditional factor demand correspondence. Assume also that Y is closed and

satis�es the free disposal property. Then,

1. c(·) is homogeneous of degree one in w and nondecreasing in q.

2. c(·) is a concave function with respect to w.

3. If the sets {z ≥ 0 : f(z) ≥ q} are convex for every q, then Y = {(−z, q) :

w · z ≥ c(w, q), ∀ w > 0}.

4. If the set {z ≥ 0, f(z) ≥ q} is convex, then z(w, q) is a convex set. More-

over, if {z ≥ 0 : f(z) ≥ q} is a strictly convex set, then z(w, q) is single

valued.

5. Shepard's Lema: if z(w, q) consists of a single point, then c(·) is di�eren-
tiable with respect to w and ∇wc(w, q) = z(w, q).

6. If z(·) is di�erentiable at w, then Dwz(w, q) = D2
wz(w, q)w = 0.

7. If f(·) is homogeneous of degree one, then c(·) and z(·) are homogeneous

of degree one in q.

8. If f(·) is concave, then c(·) is a convex function of q.

7. Prove Proposition 37.

Using the cost function, it is possible to restate the �rm's problem of deter-

mining its pro�t maximizing production level as

max
q≥0

pq − c(w, q).

FOC are

p− ∂c(w, q∗)

∂q
≤ 0,

with equality if q∗ > 0. When c(w, q) is convex, then FOC are su�cient.

8. Let f(z1, z2) = zα1 z
β
2 , α, β ∈ [0, 1]. Solve the cost minimization problem.

Prove that

c(w1, w2, q) = q
1

α+β θϕ(w1, w2)
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with ϕ(w1, w2) = w
α

α+β

1 w
β

α+β

2 and

θ =

(
α

β

) β
α+β

+

(
α

β

) −α
α+β

.

De�nition 38. We de�ne:

1. The short-term average cost
c(w,q,zf )

q , where zf is the �xed input.

2. The short-term average variable cost:
wvzv(w,q,zf )

q .

3. The short-term average �xed cost:
wfzf

q .

4. Short-term marginal cost:
∂c(w,q,zf )

∂q .

In the long term, all inputs are variable, and therefore:

1. The long-term average cost: c(w,q)
q .

2. The long-term marginal cost: ∂c(w,q)
∂q .

Remark. We have C(w, q) ≤ C(w, q, zf ). The curve C(w, q) is the envelope of

{C(w, q, zf )}zf . In each intersection point of C(w, q) and C(w, q, zf ), they have

the same slopes. Prove this considering c(q, z(q)).

9. Consider the following cost minimization problem

min w1x1 + w2x2

s. t. q = xa
1k

1−a,

where a ∈ (0, 1) and k > 0 is �xed.

a) Identify if the problem corresponds to the short term or to the long term.

b) Prove that the average cost in the short term is w1

(
q
k

) 1−a
a + w2k

q .

c) Find the marginal cost in the short term.

10. A �rm has the following production function

f(x1, x2, x3, x4) = min{2x1 + x2, x3 + 2x4}.
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Find the cost function of this �rm in terms of w, q > 0. Do the same for

f(x1, x2, x3, x4) = min{x1, x2}+min{x3, x4}.

11. Consider the following cost function:

c(w, q) = q1/2(w1w2)
3/4.

Find the production function.

12. Consider the following cost function:

c(w, q) = q(w1 −
√
w1w2 + w2).

Find the production function. Do the same for

c(w, q) =

(
q +

1

q

)
√
w1w2.
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