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We develop a path towards the proof of Brouwer's Fixed Point Theorem. We

also present an application in economic theory: the existence of the Walrasian

Equilibrium. We aim to provide the simplest. or at least one of the simplest,

proof for Brouwer's Fixed Point Theorem. The only requirements are real anal-

ysis and general topology. Besides one Lemma which is not proved in its most

general case, we prove all the results building up to the main theorem. It is im-

portant to emphasize that this work does not seek to be original or innovative,

we do not introduce any new results in the literature. Our goal is to develop a

clear and understandable approach to Brouwer's Fixed Point Theorem and its

applications in general equilibrium.
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1 Introduction

In economic theory, Brouwer Fixed Point Theorem is a very powerful tool, estab-

lishing very important results in, for instance, general equilibrium theory. This

�eld of microeconomic theory has been one of the most captivating and signif-

icant topics in economic theory. Mathematical formalism elegantly intertwines

with economics, which accounts for the numerous works, including both books

and articles, that delve into this subject, for instance Echenique and Wierman

(2012), Echenique (2023) or Ok (2007). There are numerous extensions and

generalizations, as is the case with in�nite consumption goods, the indivisibility

of goods, etc Aliprantis et al. (1990). When we reach the applications part of

this document, we mainly follow the classical scenario presented in Mas-Colell

et al. (1995) or Ellickson (1993). We do not treat the general cases or extensions

involving, for instance, elements of functional analysis.

The structure of this document is as follows. First, in Section 2 we present

Brouwer Fixed Point Theorem (BFPT) and work our way up to the proof. For

this, we require a strong Lemma known as �Borsuk Lemma�. We provide a

rigorous proof of this lemma, based on the sktech provided in Laczkovich and

Sos (2017). Although it is not the most general statement of Borsuk lemma, it

is one that avoids passing through algebraic topology. Thereafter, we state and

prove some additional results. Only equipped with this, we are ready to tackle

the main result. Finally, in Section 3, we move to the application of BFPT in

general equilibrium.

2 An elementary proof of Brouwer Fixed Point

Theorem

The statement of Brouwer Fixed Point Theorem is very short and elegant. Nev-

ertheless, its proof is not simple at all. Let us �rst announce this famous result.

Theorem 1. Let X be a non empty convex and compact subset of Rn and

f : X → X a continuous function. Then, there exists x∗ ∈ X such that

f(x∗) = x∗.
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Theorem 1 establishes therefore the existence of a �xed point for a continuous

function going from a convex and compact subset in Rn to itself.

To prove this result we start de�ning what a retraction is, in the context

of general topology. After this, we state Borsuk lemma and provide a rigorous

proof for a weaker case. Once this lemma is established, Theorem 5 arises as a

direct application. We then present and prove several results that allow us to

reach the BFPT.

De�nition 2. Let Y be a topological space and S ⊆ Y be a subset of Y

equipped with the subspace topology. A continuous function r : Y → S is

called a retraction if r(x) = x for all x ∈ S . In other words, a retraction is a

continuous function r : Y → S that �xes S. When such a function exists we say

that S is a retract of Y .

Lemma 3. Borsuk. The n dimensional closed unit ball Bn
does not retract

to the n− 1 dimensional unit sphere Sn−1.

The proof of Lemma 3 involves, most of the time, passing through algebraic

topology. See for instance Boothby (1971). In this work, we prove that there is

no continuously di�erentiable retraction from Bn
to Sn−1: a weaker statement

since the general framework is for continuous maps.

Proposition 4. No di�erentiable retraction. There is no mapping f such

that

1. f is continuously di�erentiable on an open set containing Bn

2. f(Bn
) = Sn−1

3. f(x) = x for all x ∈ Sn−1.

Proof. We proceed by contradiction. Take f satisfying all these three conditions.

For each t ∈ [0, 1], de�ne the mapping ft by

ft(x) = (1− t)f(x) + tx.

Clearly, f0 = f , f1 is the identity and each ft satis�es conditions (1) and (3).

Furthermore, ft(B
n
) ⊂ Bn

due to the convexity of Bn
. Consider the function

h : [0, 1] → R given by
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h(t) =

∫
Bn

det f ′
t(x)dx.

We show that:

(i) h(0) = 0

(ii) h(t) is a polynomial

(iii) h(t) = m(Bn) hold in an interval (1 − δ, 1] for some δ > 0. Here m(Bn)

denotes the Lebesgue measure of the unit ball.

The contradiction is hard to miss: a polynomial which is constant in an open

interval is a constant itself, and cannot take both the values of 0 andm(Bn) > 0.

For (i), write f = (f1, . . . , fn) and note that condition (2) can be rephrased

as

||f(x)||2 =

n∑
i=1

f2
i (x) = 1 ∀x ∈ Bn.

Di�erentiate to get
n∑

i=1

2fi(x)∇fi(x) = 0 ∀x ∈ Bn.

That is, for each x ∈ Bn the row vectors {∇fi(x)}1≤i≤n of f ′
t(x) are linearly

dependent and thus det f ′
t(x) = 0. Integrate on the unit ball to get h(0) = 0.

For (ii), observe that f ′
t(x) = (1 − t)f ′(x) + tI, where I ∈ Mn×n is the

identity matrix. Then, the entries of f ′
t(x) are

(f ′
t(x))ij =

(1− t) ∂fi
∂xj

(x) + t, i = j

(1− t) ∂fi
∂xj

(x), i ̸= j,

which are continuous in x due to condition (1). It is not hard to see that det f ′
t(x)

has the form
∑m

i=1 si(t) · gi(x), for some si polynomials and gi continuous func-

tions. In particular, for each i, gi is continuous in Bn
and hence bounded in

the same region. Set ci =
∫
Bn gi(x)dx ∈ R for each i. Integrate det f ′

t(x) on the

unit ball �nally to obtain that h(t) is the polynomial
∑m

i=1 cisi(t).

For (iii), recall that, as each ft satis�es condition (1), a change of variables

allows
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∫
Bn

|det f ′
t(x)|dx = m(ft(Bn)),

as long as ft is injective in Bn . Hence, it su�ces to prove, for t su�ciently close

to 1, that ft is injective in Bn, det f ′
t(x) > 0 for all x ∈ Bn and ft(Bn) = Bn.

We go in order.

As f is continuously di�erentiable on the compact Bn, it is Lipschitz of

constant M > 0. That is, ||f(x) − f(y)|| ≤ M ||x − y|| for all x, y ∈ Bn. Let

x, y ∈ Bn with x ̸= y. For t su�ciently close to 1 we get t− (1− t)M > 0 and

injectivity is then assured:

||ft(x)− ft(y)|| ≥ t||x− y|| − (1− t)||f(x)− f(y)||

≥ t||x− y|| − (1− t)M ||x− y||

= (t− (1− t)M)||x− y|| > 0.

Now consider the spaceMn×n with the norm ||·||∞. Given that the fuction det :

Mn×n → R is a polynomial on its coordinates, it is continuous. The identity,

I, has determinant equal to 1, then there exists ξ > 0 such that ||A− I||∞ < ξ

implies |det(A)−det(I)| = |det(A)−1| < 1
2 . In particular, it implies det(A) > 0.

Because f ′ is continuous in Bn
, we can de�ne C = supx∈Bn ||f ′(x)− I||∞ < ∞.

For each x ∈ Bn, we get:

||f ′
t(x)− I||∞ = ||(1− t)f ′(x) + (t− 1)I||∞

= (1− t)||f ′(x)− I||∞

≤ (1− t)C.

Thus, for t su�ciently close to 1 we get (1−t)C < ξ and this implies det(f ′
t(x)) >

0 for all x ∈ Bn.

Lastly, we prove ft(Bn) = Bn for t su�ciently close to 1. The two previous

properties assure that ft(Bn) is open for t close enough to 1, due to the open

mapping theorem. Let x ∈ Bn, then ||ft(x)|| ≤ t||f(x)|| + (1 − t)||x|| < 1.

This settles ft(Bn) ⊂ Bn. For the reverse inclusion, suppose there exists pt ∈
Bn\ft(Bn). We have that ft(Bn) is compact. Therefore, we can take ft(qt) ∈
ft(Bn) that minimizes its distance to pt. In particular,

||f(qt)− pt|| ≤ ||ft(pt)− pt|| = (1− t)||f(pt)− pt||.
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If qt ∈ Bn, then there exists an open ball V centered at ft(qt) ∈ ft(Bn) such

that V ⊂ ft(Bn) ⊂ ft(Bn) and thus ft(qt) cannot minimize the distance to pt.

Hence qt ∈ Sn−1 and, since ft �xes Sn−1, ft(qt) = qt. Hence;

||qt − pt|| ≤ (1− t)||f(pt)− pt||.

Recall that f has Lipschitz constantM in Bn
. This allows to bound ||f(pt)−pt||

as follows

||f(pt)− pt|| ≤ ||f(pt)− f(qt)||+ ||qt − pt||

≤ (M + 1)||qt − pt||.

Finally

||qt − pt|| ≤ (1− t)(M + 1)||qt − pt||

1 ≤ (1− t)(M + 1).

For t close enough to 1 we arrive to a contradiction, settling ft(Bn) = Bn. The

aforementioned change of variables settles condition (iii). As argued, (i), (ii)

and (iii) result in a contradiction, and thus there is no map f satisfying the

conditions (1), (2) and (3).

As we will see, in the applications the maps involved are continuous but,

eventually, not di�erentiable. Borsuk lemma can be extended to the most gen-

eral case where, in the statement, the function is only continuous. For further

details on this see Kannai (1981). To get an idea of how strong this lemma is,

BFPT for the case X = Bn
is a direct implication.

Theorem 5. Let f : Bn → Bn
be a continuous map. Then, there exists x∗ ∈ Bn

such that f(x∗) = x∗.

Proof. Let us suppose by contradiction that the statement is false. Then, there

exists ϕ : Bn → Bn
with no �xed point. Using ϕ let us de�ne r : Bn → Sn−1 as

the intersection point of the open ray that starts in ϕ(x) and passes through x,

with Sn−1. To de�ne it explicitly as a formula we must �nd for each x a t > 0

such that

||ϕ(x) + t(x− ϕ(x))||2 = 1,
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which is equivalent to

||ϕ(x)||2 + 2t⟨ϕ(x), x− ϕ(x)⟩+ t2||x− ϕ(x)||2 = 1.

Then this quadratic equation on t has only one positive solution which is given

by

t(x) = −⟨ϕ(x), x− ϕ(x)⟩
||x− ϕ(x)||2

+

[√
⟨ϕ(x), x− ϕ(x)⟩2 + ||x− ϕ(x)||2(1− ||ϕ(x)||2)

||x− ϕ(x)||2

]
.

Thus, r must be

r(x) = ϕ(x) + t(x)(x− ϕ(x)).

Of course, t is continuous since it was de�ned explicitly, and thus r is too. In

addition, r �xes Sn−1 which can be easily seen using the geometric interpretation

of r. Thus, r is a retraction from Bn
to Sn−1, and a contradiction arises due to

Lemma 3 in its most general statement.

Now we continue with the elements leading to the proof of the main result.

The following propositions allow us to generalize Theorem 5 for X a non-empty

compact convex subset.

De�nition 6. Given a compact and convex set S in Rn, denote the projec-

tion operator over S as πS : Rn → S. It is implicitly de�ned by the relation

d(x, πS(x)) = d(x, S), where

d(x, S) = inf{d(x, s) = ||x− s|| : s ∈ S}.

Proposition 7. πS is well de�ned.

Proof. Given a �xed x ∈ Rn there exists at least one s such that d(x, s) = d(x, S)

since S is compact. Now assume that there are two such points; let them be s1

and s2. Let h be the projection of x over the line that connects s1 and s2. It is

not hard to see that h lies in between s1 and s2 since the triangle with vertices

x, s1 and s2 is isosceles with d(x, s1) = d(x, s2). Furthermore, h belongs to S

due to its convexity. This is a contradiction since

d(x, h) < d(x, s1) = d(x, S) ≤ d(x, h).

Hence, there is a unique point that minimizes the distance between x and S.
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Proposition 8. πS is a continuous application.

Proof. Let p and q be two arbitrary di�erent points in Rn. Firstly we realise

that

⟨πS(p)− πS(q), q − πS(q)⟩ ≤ 0.

Otherwise denoting v = πS(p) − πS(q) and w = q − πS(q). Clearly, by the

previous proposition and the contradiction assumption, ||v|| > 0 and

d(πS(q) + εv, q)2 = ||w||2 + ε2||v||2 − 2⟨εv, w⟩

d(πS(q) + εv, q)2 = ||w||2 + ε||v||2
(
ε− 2

⟨v, w⟩
||v||2

)
.

Then for a positive ε small enough,

d(πS(q) + εv, q) < ||w|| = d(q, πS(q)) = d(q, S),

which is a contradiction since πS(q)+εv belongs to S due to its convexity. Now

with this last result we can conclude the following:

d(q, πS(p))
2 = d(q, πS(q))

2 + d(πS(p), πS(q))
2 − 2⟨πS(p)− πS(q), q − πS(q)⟩.

d(q, πS(p))
2 ≥ d(q, πS(q))

2 + d(πS(p), πS(q))
2. (1)

On the other hand, thanks to the triangular inequality,

d(p, q) + d(p, πS(p)) ≥ d(q, πS(p)). (2)

Then, with both (1) and (2) at our disposal we can conclude that

d(p, q)2 + 2d(p, q)d(p, πS(p)) + d(p, πS(p))
2 ≥ d(q, πS(p))

2.

d(q, πS(p))
2 ≥ d(q, πS(q))

2

+ d(πS(p), πS(q))
2.

d(p, q)2 + 2d(p, q)d(p, πS(p)) + d(p, πS(p))
2 ≥ d(q, πS(q))

2

+ d(πS(p), πS(q))
2.

d(p, q)2 + 2d(p, q)d(p, πS(p)) + d(p, πS(p))
2 − d(q, πS(q))

2 ≥ d(πS(p), πS(q))
2.
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Since d(p, q)2, 2d(p, q)d(p, πS(p)) and d(p, πS(p))
2 − d(q, πS(q))

2 get closer to 0

as q gets closer to p1 we can conclude that d(πS(p), πS(q))
2 converges to 0 as q

converges to p, proving that πS is continuous.

We give now some last additional results, essential to prove BFPT.

Proposition 9. Let S be a retract of Y . If Y possesses the �xed point property,

then S does as well.

Proof. Let f : S → S be a continuous map and r : Y → S the retraction. First,

f ◦r : Y → S ⊂ Y is continuous, and since Y possesses the �xed point property,

there exists y ∈ Y such that y = f(r(y)) ∈ S. However, since r(y) = y, we

obtain y = f(y), which proves S has the desired property.

Proposition 10. Let S ⊂ Bn

δ be a closed and convex set (therefore compact),

where

Bn

δ = {x ∈ Rn : ||x|| ≤ δ}.

Then, there exists a retraction r : Bn

δ → S.

Proof. Let r : Bn

δ → S be the restriction over Bn

δ of the projection operator πS .

By proposition 8 it is straightforward to see that r is continuous. It is even

clearer that r �xes S.

Proposition 11. Let A and B be two homeomorphic spaces. If A possesses

the �xed point property, then B does as well.

Proof. Let f : B → B be a continuous map and consider the homeomorphism

g : B → A. Then g ◦ f ◦ g−1 is a continuous map from A to A. There exists

therefore a∗ ∈ A such that a∗ = (g ◦ f ◦ g−1)(a∗). Apply g−1 on both sides to

get g−1(a∗) = f(g−1(a∗)). Therefore b∗ = g−1(a∗) is a �xed point for f .

Hereafter the main proof of this document: Brouwer Fixed Point Theorem.

As we shall see, it is a consequence of all previous propositions and theorems.

Proof. Since X is convex and compact, there exists δ > 0 such that X ⊂ Bn

δ .

Using the map φ(x) = x/δ, φ : Bn

δ → Bn
, we can establish that Bn

δ and Bn

1This arises from the fact that x → d(x, S) is a continuous function.
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are homeomorphic. By Theorem 5, we know that there is x∗ ∈ Bn
such that

f(x∗) = x∗, f continuous. Then, by Proposition 11, Bn

δ possesses the �xed point

property. Finally, by Proposition 10, X is a retract of Bn

δ and, by Proposition

9, X possesses the �xed point property too.

We have proven BFPT using the stronger version of Borsuk's lemma. This

lemma was proven in a weaker case, as the proof of the general case involves

more sophisticated tools. Besides this lemma, our proof is relatively simple.

Hereafter we present applications in general equilibrium theory. We start by

situating ourselves in an economic context and then prove a highly signi�cant

result in economic theory that makes use of Brouwer's �xed-point theorem: the

existence of Walrasian equilibrium.

3 Existence of the Walrasian equilibrium

The purpose of this section is to illustrate the importance of Brouwer Fixed

Point Theorem in general equilibrium theory. Even if the content might be

standard in the literature, we derive some results on our own.

For the following de�nitions and standard framework we mainly follow El-

lickson (1993), Mas-Colell et al. (1995), and Echenique (2023).

Let i = 1, ..., I be the consumers of the economy, Xi ⊂ RL
+ their consumption

sets, ⪰i their preferences over Xi and ωi ∈ RL
+ their endowment. Assume

furthermore that the preferences ⪰i can be represented through utility functions

ui(·).
A pure exchange economy is

E = (ωi, ui)Ii=1.

De�nition 12. An allocation for the pure exchange economy is a collection of

consumption vectors

x = (x1, ..., xI) ∈
I∏

i=1

Xi ⊂ RIL
+

Hereafter we de�ne the notion of Walrasian equilibrium for this economy

following Echenique (2023).
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De�nition 13. Given a pure exchange economy, an allocation x∗ and a price

vector p = (p1, ..., pL) constitute a Walrasian equilibrium if

1. ∀ i, x∗
i (p, p ·ωi) ∈ Xi is maximal with respect to the choice for ⪰i over the

set

B =

{
xi ∈ Xi : p · xi ≤ p · ωi

}
.

2.
∑

i x
∗
i =

∑
i ωi.

In this framework, when preferences are rational and continuous, and
∑

i ωi >

0, an allocation x∗ and a price vector p = (p1, ..., pL) constitute a Walrasian

equilibrium if

1. for each i = 1, ..., I, x∗
i ∈ B(p, p · ωi) = {xi ∈ RL

+ : p · xi ≤ p · ωi} and

maximices ui(·) over B(p, p · ωi).

2.
∑I

i=1 x
∗
i (p, p · ωi) =

∑I
i=1 ωi.

Remark. The di�erence with the previous statement is that , rationality and

continuity of the preferences ⪰i imply the existence of a utility functions ui(·).

De�nition 14. We de�ne the aggregated demand excess function by

z(p) =
∑
i

zi(p) =
∑
i=1

[x∗
i (p, p · ωi)− ωi]︸ ︷︷ ︸

individual excess of demand

.

Since p > 0, z : RL
++ → RL.

Before addressing the main issue of this section, we present some properties

of this function, very relevant in economic theory but also for the proof of the

main result.

Lemma 15. Maximum principle. Let X and Y be two topological spaces

and f : X ×Y → R be a continuous function with respect the product topology

over X ×Y, and let Γ : Y ⇒ X be a compact-valued correspondence (see Lucas

et al. (1988)) s.t. Γ(y) ̸= ∅ ∀ y ∈ Y. Let us de�ne the value function f∗ : Y → R:

f∗(y) = sup{f(x, y) : x ∈ Γ(y)}

and the set of maximizers Γ∗ : Y → X :

Γ∗(y) = argmax{f(x, y) : x ∈ Γ(y)}.
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If Γ is both upper and lower hemicontinuous at y, then f∗ is continuous and Γ∗

upper hemicontinuous, non empty and compact valued.

Lema 15 �ts in the context of the utility maximization problem:
max u(x)

s.a. p · x ≤ I

x ∈ RL
+.

Indeed, set X = RL
+ the space of commodities, Y = RL

++ × R++ the space of

prices: (p, I), f(x, y) = u(x) the utility function and

Γ(y) = B(p, I) = {x ≥ 0 : p · x ≤ I}

the consumer budget set. Then:

1. The indirect utility function v(p, I) is continuous.

2. Marshallians demands x∗(p, I) are continuous.

Proposition 16. If (⪰i, ωi)
I
i=1 is a pure exchange economy s.t. ω =

∑I
i=1 ωi ≫

0 and ⪰i is continuous, strictly convex and strictly monotonic, then z(·) satis�es
the following properties:

1. z is continuous.

2. z is homogeneous of degree zero: z(λp) = z(p) ∀ λ > 0.

3. z satis�es Walras law: ∀ p ∈ RL
++ : p · z(p) = 0.

4. ∃ M > 0 such that ∀ ℓ = 1, ..., L and p ∈ RL
++: zℓ(p) > −M .

Proof. Item by item:

1. The continuity of ui(·) and properties of B(p, I) ensures by Lemma 15 the

continuity of x∗
i (p, p · ωi) for all i = 1, ..., I, and therefore the continuity

of z.

2. For each consumer i = 1, ..., I its budget set

B(p, p · ωi) = {xi ≥ 0 : p · xi ≤ p · ωi}

clearly remains unchanged if p → λp.
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3. Since ⪰i is strictly monotonic for each consumer,

∀ i = 1, ..., I : p · x∗
i (p, p · ωi)︸ ︷︷ ︸

expenditure

= p · ωi︸ ︷︷ ︸
income from endowment

.

Hence:

I∑
i=1

p · x∗
i (p, p · ωi) =

I∑
i=1

p · ωi

p ·

(
I∑

i=1

x∗
i (p, p · ωi)− ωi

)
= 0

p · z(p) = 0.

4. Since x∗
ℓi(p, p · ωi) is positive for each consumer i = 1, ..., I and good

ℓ = 1, ..., L:

zℓ(p) ≥ −ωℓ.

Let M > maxℓ=1,...,L{ωℓ}. Then, zℓ(p) > −M for all ℓ and p ∈ RL
++.

Another property that z(·) satis�es is that if {pn}n∈N ⊂ RL
++ converges to

p ̸= 0 such that there exists ℓ : pℓ = 0, then

max{z1(pn), ..., zL(pn)} → ∞.

The proof can be found in Echenique (2023). We now focus on the main topic

of this section: how Brouwer Fixed Point Theorem is applied in order to proof

Walrasian equilibrium existence.

Theorem 17. Existence of Walrasian equilibrium. In the context of

Proposition 16, for z : RL
+ → RL, there exists p∗ ∈ RL

+ such that z(p∗) ≤ 0.

Furthermore, if z : RL
++ → RL, there exists p∗ such that z(p∗) = 0.

The proof of this theorem relies on Theorem 1. Nowadays the following is

well known and can be found (following similar or very di�erent approaches) in,

for example, Mas-Colell et al. (1995), Varian (1992) or Ellickson (1993).

Proof. First, since z is homogeneous of degree zero, we can restrict p to the ∆

13



(also known as n−dimensional simplex), de�ned as follows:

∆ =

{
p ∈ RL

+ :

L∑
ℓ=1

pℓ = 1

}
.

This set is clearly convex and compact. Indeed, given p1, p2 ∈ ∆ and θ ∈ [0, 1],

p3 = θp1 + (1− θ)p2 ∈ ∆ :

L∑
ℓ=1

p3ℓ =

L∑
ℓ=1

θp1ℓ + (1− θ)p2ℓ

= θ

L∑
ℓ=1

p1ℓ + (1− θ)

L∑
ℓ=1

p2ℓ

= θ + (1− θ) = 1.

With respect to the compactness, ∆ is closed since it is the intersection of

the orthant RL
+ and the hyperplane H ((1, ..., 1), 1). It is bounded since ∆ ⊂

[0, 1]L. Hence, since all of this occurs in RL, ∆ is a compact set. It is therefore

possible to apply Brouwer �xed point over ∆. We would only need to prove

that z(p) + p maps ∆ onto ∆. However, this is not the case in general. This is

where the following trick is employed, which allows us to conclude the matter

using Brouwer's Fixed Point Theorem. Let us de�ne Ψ : ∆ → RL de�ned as

follows:

Ψℓ =
pℓ +max{0, zℓ(p)}

1 +
∑L

ℓ=1 max{0, zℓ(p)}
, ∀ ℓ = 1, ..., L.

Since
∑L

ℓ=1 pℓ = 1,

L∑
ℓ=1

Ψℓ =

L∑
ℓ=1

{
pℓ +max{0, zℓ(p)}

1 +
∑L

ℓ=1 max{0, zℓ(p)}

}
= 1,

i.e., Ψ(∆) ⊂ ∆. Hence, by Theorem 1, there exists p∗ such that Ψ(p∗) = p∗.

This yields to: ∀ ℓ = 1, ..., L

p∗ℓ =
p∗ℓ +max{0, zℓ(p∗)}

1 +
∑L

ℓ=1 max{0, zℓ(p∗)}

p∗ℓ

(
1 +

L∑
ℓ=1

max{0, zℓ(p∗)}

)
= p∗ℓ +max{0, zℓ(p∗)}
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p∗ℓ

L∑
ℓ=1

max{0, zℓ(p∗)} = max{0, zℓ(p∗)}

zℓ(p
∗)p∗ℓ

L∑
ℓ=1

max{0, zℓ(p∗)} = zℓ(p
∗)max{0, zℓ(p∗)}

L∑
ℓ=1

zℓ(p
∗)p∗ℓ︸ ︷︷ ︸

=0

[
L∑

ℓ=1

max{0, zℓ(p∗)}

]
=

L∑
ℓ=1

zℓ(p
∗)max{0, zℓ(p∗)}

Therefore,
L∑

ℓ=1

zℓ(p
∗)max{0, zℓ(p∗)} = 0. (3)

Equation 3 points out that zℓ(p
∗) ≤ 0, ∀ ℓ = 1, ..., L. Finally, once again by

Walras Law (Proposition 16) since we must have

L∑
ℓ=1

p∗ℓzℓ(p
∗) = 0 (4)

with pℓ ≥ 0, combining (4) with Equation 3 we must have pℓzℓ(p
∗) = 0 for all

ℓ = 1, ..., L. Finally, for pℓ > 0, necessarily zℓ(p
∗) = 0 for all ℓ = 1, ..., L, which

concludes the proof.

Theorem 17 allows us to appreciate the power of Brouwer's �xed-point ar-

gument: it has been proven under very reasonable assumptions about consumer

preferences that there exists a price vector that clears the market. The appli-

cations of general equilibrium theory are vast, as mentioned in Echenique and

Wierman (2012). One of the main challenges is for instance to compute this

equilibrium, which is of great interest in macroeconomics. To conclude this

work, by way of an example, we will compute the vector of prices for Walrasian

equilibrium when all consumers share the same preferences: Cobb-Douglas, with

I = L− 1.

Example 18. Let us consider a pure exchange economy where all consumers

have the same preferences: Cobb-Douglas

ui(x1i, ..., xLi) =

L∏
i=1

xαℓi

ℓi ,
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such that
∑L

ℓ=1 αℓi = 1 and αℓi ∈ (0, 1). Let us denote, as usual, ωℓi the

endowment of ℓ good of consumer i, such that ω > 0. The maximization

problem faced by all consumers is

Pi


max ui(xi) =

∏L
ℓ=1 x

αℓi

ℓ

s.a.
∑L

ℓ=1 pℓxℓi =
∑L

ℓ=1 pℓωℓi

xℓi ≥ 0.

The Cobb-Douglas function satis�es Inada conditions. Therefore, the solution

is not a corner solution Chávez and Gallardo (2024) and we can reduce the

restrictions to xℓi > 0. From this last, and using that ln(·) is strictly increasing

and concave, we might re-write Pi as follows:

Pi


max ln[ui(xi)] = ln

(∏L
ℓ=1 x

αℓi

ℓi

)
=
∑L

ℓ=1 αℓi lnxℓi

s.a.
∑L

ℓ=1 pℓxℓi =
∑L

ℓ=1 pℓωℓi

xℓi > 0.

Pi can be solved using Lagrange Chávez and Gallardo (2024)

L ({xℓi}Lℓ=1, λ) =

L∑
ℓ=1

αℓi lnxℓi + λ

[
L∑

ℓ=1

pℓωℓi −
L∑

ℓ=1

pℓxℓi

]
.

First-order conditions will be enough to characterize the equilibrium in reason

of the di�erentiability and strict concavity of the utility function:

∀ ℓ = 1, ..., L :
∂L

∂xℓi
=

αℓi

xℓi
− λpℓ = 0.

Summing over ℓ

L∑
ℓ=1

αℓi︸ ︷︷ ︸
=1

=
L∑

ℓ=1

λpℓxℓi =⇒ λ =
1∑L

ℓ=1 pℓxℓi

=
1∑L

ℓ=1 pℓωℓij

.

From this,

∀ i, ℓ : xℓi =
αℓi

pℓ

(
L∑

ℓ=1

pℓωℓi

)
.

Since the clearing marker conditions impose

I∑
i=1

xℓi =

I∑
i=1

ωℓi, ∀ ℓ = 1, ..., L
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we have
I∑

i=1

αℓi

(
L∑

ℓ=1

pℓωℓi

)
= pℓ

I∑
i=1

ωℓi, ∀ ℓ = 1, ..., L. (5)

After normalizing without loss of generality p1 = 1, the right side of Equation

5 can be written as follows in a compact way

∑I
i=1 ω1i 0 · · · 0

0
∑I

i=1 ω2i

...
...

. . .

0
∑I

i=1 ωLi


︸ ︷︷ ︸

W



p1︸︷︷︸
=1

p2
...

pL


︸ ︷︷ ︸

p̃

.

On the other hand, the left side of Equation 5 can be put under matrix form

too as follows (writing ωiℓ and αiℓ)
α11 α12 · · · α1L

α21 α22

...
...

. . .

αI1 αIL



T 
ω11 ω12 · · · ω1L

ω21 ω22

...
...

. . .

ωI1 ωIL


︸ ︷︷ ︸

=



∑I
i=1 αi1ωi1

∑I
i=1 αi1ωi2 · · ·

∑I
i=1 αi1ωiL∑N

i=1 αi2ωi1
. . .

...
...

. . .∑I
i=1 αiLωi1

∑L
j=1 αiLωiL


︸ ︷︷ ︸

=Σ



p1︸︷︷︸
=1

p2
...

pL



If we denote b as the �rst column vector of matrix Σ, excluding the �rst entry,

A as the sub-matrix I × (L − 1), which includes all columns except the �rst

column of Σ, p as the truncated price vector, excluding p1 = 1, and W as the

(L− 1)× (L− 1) matrix (excluding the �rst row and �rst column of W ), then:

p = (W −A−1b, p1 = 1.

It is easy to check that the conditions of Theorem 17 are satis�ed, backing up

our conclusion.

17



4 Conclusion

In this document, we have provided a proof of Borsuk's lemma for continuously

di�erentiable retractions, as outlined in Laczkovich and Sos (2017) (which pro-

vides a sketch of the general argument). Theorem 5 follows as a direct result. We

then presented and proved several results that allowed us to prove the general

case of Brouwer Fixed Point Theorem. We followed the statements according

to Ok (2007), providing our own constructions

After completing the proof of the BFPT, we delved into General Equilibrium

Theory. The Walrasian existence theorem for pure exchange economies was

proven, and we also presented an example which is not of standard character,

illustrating the power of Theorem 17.

We hope the reader will �nd this document highly interesting and useful,

especially for better understanding and applying how Brouwer's Fixed Point

Theorem, after being proven in a slightly more restrictive case, is utilized in

general equilibrium to derive one of the main results of the theory.
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