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Important: from the mathematical preliminaries, you must be clear with concepts
from you course Statistical Inference (the ones that you must define). With respect to
the implicit function theorem, you only need to understand where it is applied and
the general idea.
Order: exercises 1-4 are mandatory. Exercises 5-7 and 12 are highly recommended.
Exercises 8-11 are postgraduate level. Advanced exercises are from PhD and require
some tools that are no delivered in Mathematics for Economists I-IV.
Suggestion: be efficient and start solving the mandatory exercises as well as the
recommended. Pass to the others only if you have finished the others, or if you think
that you can easily solve them.

Mathematical preliminaries

Probability theory

Define what is

1. A probability space. (Ω,F , P)

2. A random variable. X : Ω → R.

3. A probability measure. P : F → [0, 1].

4. CDF, density, expectation and variance. FX, fX, E[X], Var(X).
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Implicit function theorem

1. Used in: comparative statics (Micro 1, Macro 1). Now, see Exercise 13.

2. Formal and general statement: let f : Rn+m → Rm be a C1 function. De-
note (x, y) = (x1, · · · , xn, y1, · · · , ym) ∈ Rn+m. Fix (a, b) ∈ Rn × Rm such that
f (a, b) = 0. If J f ,y(a, b) =

[
∂ fi
∂yj

(a, b)
]

is invertible, then there exists U ⊂ Rn,
open, containing a, such that there exists a unique function g : U → Rm with
g(a) = b and f (x, g(x)) = 0 for all x ∈ U. Moreover, g is C1 and[

∂gi

∂xj
(x)

]
m×n

= −[J f ,y(x, g(x))]−1
m×m[J f ,x(x, g(x))]m×n.

3. Interpretation: if you have an equation F(θ∗, x∗) = 0, where θ are parameters,
and the conditions of the theorem are satisfied, then, we can write x = x(θ) for
θ close to θ∗. The function x(θ) is C1 and we can calculate ∂xi

∂θj
. Usually, F = ∇ f ,

so F = 0 corresponds to first order conditions ∇ f = 0.

Example 1. Consider f (x, y) = x2 + y2. The equation f (x, y) = 1 corresponds to the
unity circle. A way to represent the unit circle is taking y = ±

√
1 − x2. It is only

possible to do this by parts.

Figure 1: Fig1

Example 2. Given the utility maximization problem1, assuming Inada conditions hold
for the utility function u(x, y), the problem is written as

max u(x, y)

s.t. : pxx + pyy = I.

We wish to determine dx
dI and dx

dpx
. For simplicity, we use the notation

∂u
∂x

= ux, and
∂u
∂y

= uy.

1In the following chapter, we delve into optimization topics.
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From the first-order conditions, we obtain the following system:

∂L
∂x

= ux − λpx = 0,

∂L
∂y

= uy − λpy = 0,

∂L
∂λ

= I − pxx − pyy = 0.

Taking differentials in these three equations, we get

d(ux − λpx) = uxxdx + uxydy − dλpx − λdpx = 0,

d(uy − λpy) = uyydy + uyxdx − dλpy − λdpy = 0,

d(I − pxx − pyy) = dI − dxpx − xdpx − dypy − ydpy = 0.

The Inada conditions ensure that the goods are normal and preferences are convex.
Therefore:

uxy > 0, uxx, uyy < 0.

Thus, the system of equations becomes uxx uxy −px

uyx uyy −py

−px −py 0

dx
dy
dλ

 =

 λdpx

λdpy

xdpx + ydpy − dI

 .

Applying Cramer’s rule to obtain
dx
dI

,

considering dpx = dpy = 0 (keeping prices constant), we compute

dx =
1
|A|

∣∣∣∣∣∣
0 uxy −px

0 uyy −py

−dI −py 0

∣∣∣∣∣∣ ,

where

|A| = det

 uxx uxy −px

uyx uyy −py

−px −py 0


= −uxx p2

y + uxy px py + uyx px py − uyy p2
x > 0.︸ ︷︷ ︸

convex preferences, i.e., u is quasi-concave

Then,
dx
dI

=
uxy py − pxuyy

|A| > 0.

The inequality follows from the fact that marginal utility decreases for each good
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uxx, uyy < 0, while the cross derivatives are positive due to convex preferences
uxy, uyx > 0.

Regarding dx
dpx

, considering dpy = dI = 0

dx =
1
|A|

∣∣∣∣∣∣
λdpx uxy −px

0 uyy −py

xdpx −py 0

∣∣∣∣∣∣ .

Expanding the determinant in the numerator,

dx
dpx

=
−λp2

y − xpyuxy + xpxuxx

|A|

=
−λp2

y + x(uyy px − uxy py)

|A|

= −
λp2

y

|A| − x
dx
dI

< 0.

This equation indicates that when the price of a good increases, demand for that good
decreases due to a substitution effect and an income effect2.

Remark. For the interested student only. If S is a surface3 embedded in RN, we can
apply the IFT locally under mild assumptions. The course Real Analysis 1 studies
this.

2This result gains interpretive value when deriving the Slutsky equation.
3An m-dimensional Cr (r ≥ 1) parameterization of a set U ⊂ RM is a homeomorphism φ : U0 → U

where U0 is an open set in Rm and φ : U0 → RM is a immersion (∀ x ∈ U, d fx is one-to-one) of class
Cr.

An m-dimensional Cr (r ≥ 1) surface in RM is a set M ⊂ RM such that in a neighborhood of each
point p ∈ M, we can obtain an open set U ⊂ M and an m-dimensional parameterization φ : U0 → U
of class Cr, U0 ⊂ Rm.
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Mandatory exercises

Choice under uncertainty

Exercise 1. Manuel has an initial wealth of w > 0 (in soles). There exists a risky asset
that provides a return of z ≥ 0 for each sol invested. In scenario ωH, which occurs
with probability 0 < pH < 1, the return is zH > 1. In scenario ωL, which occurs with
probability pL = 1 − pH, the return is zL < 1. Manuel’s Bernoulli utility is given by
v(·), a differentiable and strictly concave function. Manuel decides how much of his
wealth (α) to invest in this asset.

a) Argue why Manuel’s problem can be expressed as

max
0≤α≤w

pLv(w + α(zL − 1)) + pHv(w + α(zH − 1)).

b) Derive the first-order conditions to obtain the optimal investment amount α∗.

c) In which case are these conditions sufficient?

d) Consider the case where the expected net return is non-positive, i.e., E[z]− 1 ≤
0. Show that, in this case, the optimal investment is α∗ = 0.

e) Consider the case where the expected return is positive, i.e., E[z]− 1 > 0. Show
that, in this case, the optimal investment satisfies α∗ > 0.

Solution:

a) We have only two states of nature, ωH and ωL. In state ωL, the payment that
Pancho receives for purchasing α units is αzL. For this, he had to pay α. Hence,
his wealth in this state is: w + α(zL − 1). A similar reasoning leads to his wealth
in state ωH being: w + α(zH − 1).Thus, his expected utility is given by:

U(α) = pLv(w + α(zL − 1)) + pHv(w + α(zH − 1)).

Finally, we must maximize U(α) over the interval [0, w] since the amount in-
vested must be non-negative and cannot exceed the total wealth (no borrowing
is allowed).

b) For interior solutions, we differentiate with respect to α and set it equal to zero:

dU
dα

= (zL − 1)pLv′(w + α(zL − 1)) + (zH − 1)pHv′(w + α(zH − 1)) = 0.

c) The sufficiency of the conditions depends on the concavity of the objective func-
tion and the interiority of the solutions (in order to differentiate). Assuming
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an interior solution, if the second derivative of the objective function is non-
positive, we can conclude that the critical point is optimal. Thus, we differenti-
ate U twice:

d2U
dα2 = (zL − 1)2pL︸ ︷︷ ︸

≥0

v′′(w + α(zL − 1))︸ ︷︷ ︸
≤0

+ (zH − 1)2pH︸ ︷︷ ︸
≥0

v′′(w + α(zH − 1))︸ ︷︷ ︸
≤0

≤ 0.

Since v′′(·) ≤ 0, we have d2U
dα2 ≤ 0. Thus, the first-order conditions are sufficient

under the given assumptions. In the case of a corner solution, i.e., α∗ ∈ {0, w},
we must compare the objective function evaluated at these points with the ob-
jective function evaluated at the critical points. Moreover, if Inada conditions
are imposed on u(·), we can rule out α∗ = 0.

d) To prove that the optimal investment is α∗ = 0, it is enough to show that U′(0) ≤
0. Indeed, if U′(0) ≤ 0, since U′(·) is monotonic, the maximum is achieved at
α∗ = 0 (given the constraint α ∈ [0, w]). Thus,

dU
dα

(0) = (zL − 1)pLv′(w) + (zH − 1)pHv′(w)

= (pLzL + pHzH − pL − pH)v′(w)

= (E[z]− 1)︸ ︷︷ ︸
≤0

v′(w)︸ ︷︷ ︸
>0

≤ 0.

e) By a reasoning similar to the one made in part (d), it is enough to show that
U′(0) > 0. Indeed, if this is the case, the optimum is found to the right of α = 0.
Thus,

dU
dα

(0) = (zL − 1)pLv′(w) + (zH − 1)pHv′(w)

= (pLzL + pHzH − pL − pH)v′(w)

= (E[z]− 1)︸ ︷︷ ︸
>0

v′(w)︸ ︷︷ ︸
>0

> 0.

Exercise 2. An individual working in the construction sector receives a wage of 500
soles. However, they are exposed to falls with a probability of 1

2 , which could
cost them 100 soles for recovery. Therefore, they wish to insure themselves with
a company for an amount M in case of a fall. The individual’s utility function is
v(x) = x1/2. The insurance covers the full cost of 100 soles.
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• Find the expected value and the expected utility of the individual without in-
surance.

• Calculate the maximum amount that a monopolistic insurer can charge for the
insurance (find the amount M).

Solution:

• We build the table with payments and probabilities:

Suffers fall Doesn’t suffer fall

Without insurance 400 500

With insurance 500 − M 500 − M

Probabilities 1
2

1
2

Expected value

E =
1
2
× 400 +

1
2
× 500 = 450

Expected utility without insurance

Ue
without insurance =

1
2
× (400)1/2 +

1
2
× (500)1/2 = 21.180

• Equating the expected utility without insurance to the expected utility with
insurance:

21.180 =
√

500 − M

Squaring both sides:
(21.180)2 = 500 − M

M = 500 − (21.180)2

M ≈ 51.4076

Risk aversion

Exercise 3. Regarding Absolute Risk Aversion (ARA) and Relative Risk Aversion (RRA):

(a) Explain the difference between Absolute Risk Aversion (ARA) and Relative Risk
Aversion (RRA). How are they defined mathematically, and what is their eco-
nomic interpretation?

(b) Consider two individuals with utility functions v1(c) and v2(c). The first ex-
hibits constant absolute risk aversion, while the second exhibits constant relative
risk aversion. Derive the expressions for A(c) and R(c) for each one.
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(c) Suppose an investor has a utility function v(c; θ) = c1−θ−1
1−θ , where θ ∈ (0, 1) is

the coefficient of relative risk aversion. Derive the expressions for ARA and
RRA for this utility function and explain how they are related. What happens
to these measures as wealth c increases?

(d) Calculate limθ→1 v(c; θ).

Solution:

a) Remember that,

ARA(x) = −v′′(x)
v′(x)

RRA(x) = −x
v′′(x)
v′(x)

Where v is the utility, v′ is the marginal utility and v′′ measures how concave
the utility function is.

Risk aversion is closely linked to the concavity of the elementary utility function
v. In the presence of risk aversion (concavity), a loss of ϵ > 0 is not compensated
by a gain of ϵ.

However, we do not use −v′′(x) directly, because this measure is not invariant
under affine linear transformations av(x) + b. For instance, while 10

√
x and

√
x

have the same essence regarding risk aversion, the former would have a higher
−v′′ coefficient. Therefore, the Arrow-Pratt coefficient ARA(x) is introduced.
Regarding RRA(x), the factor x serves to adjust for the level of wealth.

b) Starting with the first consumer, constant absolute risk aversion means that

A(c) = −v′′(c)
v′(c)

= γ

Thus,

R(c) = −c
v′′(c)
v′(c)

= γc

Furthermore, we can compute for v1(c) by solving the first expression as an
ordinary differential equation. If f (c) = v′(c), then f ′(c) = v′′(c), so you have a
separable ordinary differential equation:

f ′(c)
f (c)

= −γ

d f (c)
f (c)

= −γdc

∫ d f (c)
f (c)

=
∫

−γdc
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ln f = −γc + B

v′(c) = f (c) = Ae−γc

v(c) =
∫

Ae−γcdc

v1(c) = Ae−γc + B

With A, B, γ constant.

In the case of constant relative risk aversion, we have

R(c) = −c
v′′(c)
v′(c)

= ρ

Thus,

A(c) = −v′′(c)
v′(c)

=
ρ

c

Then we can solve,

v′(c) = exp
[∫

−ρ

c
dc
]
= exp(−ρ ln c + B)

So, v(c) =
∫

v′(c)dc, thus,

v2(c) =
Ac1−ρ

1 − ρ
+ B, ρ ̸= 1

If ρ = 1, then v2(c) = A ln c + B

c) Directly calculating, we get

ARA(c) =
θ

c
RRA(c) = θ

d) Finally,

lim
θ→1

=
c1−θ − 1

1 − θ
= lim

θ→1

e(1−θ) ln c − 1
1 − θ

Applying l’Hôpital’s rule,

lim
θ→1

e(1−θ) ln c − 1
1 − θ

= ln c

Comparative statics

Exercise 4. Based on Allingham and Sandmo (1972). In the Allingham and Sandmo
(1972) model, an individual has wealth w, known only to them. Since the tax author-
ity does not know this information, the individual has the option to declare all their

9



income or an amount smaller than their true income. When the individual reports
their income, the state collects a fraction θ of the reported wealth. However, if the
individual declares less than their true wealth, there is a probability π that tax au-
thorities will investigate and discover the discrepancy. In such a case, the individual
is penalized with a higher tax rate γ, greater than θ, on the undeclared amount. Con-
versely, with probability 1− π, no investigation occurs, and the individual keeps part
of their wealth untaxed. To determine the amount of wealth reported (x), the indi-
vidual solves the following problem: maximize their expected utility Ue by choosing
x such that:

max (1 − π) · v(w − θx) + π · v(w − θx − γ(w − x))

where v is the Bernoulli utility function. Taking the derivative with respect to x and
setting it to zero, we obtain:

− (1 − π) θv′(w − θx) + π (γ − θ) v′(w − θx − γ(w − x)) = 0.

If the solution is interior, the undeclared amount at equilibrium will be neither zero
nor maximum (equal to wealth). Thus, the first-order condition evaluated at income
levels close to 0 must be positive, while the condition evaluated at w must be negative.

To illustrate some effects on the amount declared with these variables, we can
assume a natural logarithmic utility function. The expected utility maximization
problem then takes the form:

max (1 − π) ln(w − θx) + π ln(w − θx − γ(w − x)).

Solve this problem. Additionally, perform comparative statics of x with respect to θ

and w, without assuming v = ln, to examine the general case.

Solution:
With a probability of π, they get w − θx − γ(w − x) and with a probability of

1 − π, they get w − θx. Therefore,

Ue = πv(w − θx − γ(w − x)) + (1 − π)v(w − θx)

If we maximize that, FOC yields

dUe

dx
= (γ − θ)πv′(w − θx − γ(w − x))− θ(1 − π)v′(w − θx) = 0

Thus,
(γ − θ)π

θ(1 − π)
=

v′(w − θx)
v′(w − θx − γ(w − x))

We verify that it is a maximum, we derive second order conditions,

d2Ue

dx2 = (γ − θ)2π︸ ︷︷ ︸
≥0

v′′(w − θx − γ(w − x))︸ ︷︷ ︸
≤0

+ θ2(1 − π)︸ ︷︷ ︸
≥0

v′′(w − θx)︸ ︷︷ ︸
≤0

≤ 0

We also analyse what happens in the edges,
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lim
x→0+

dUe

dx
= (γ − θ)πv′(w − γw)− θ(1 − π)v′(w) > 0

and

lim
x→w−

dUe

dx
= (γ − θ)πv′(w − θw)− θ(1 − π)v′(w − θw) < 0

.
If v(x) = ln(x), then FOC yields

(γ − θ)π

θ(1 − π)
=

v′(w − θx)
v′(w − θx − γ(w − x))

(γ − θ)π

θ(1 − π)
=

−θ
w−θx
γ−θ

w−θx−γw+γx

− (γ − θ)π

θ(1 − π)
=

θ(w − θx − γw + γx)
(γ − θ)(w − θx)

− π

(1 − π)
=

θ2(w − θx − γw + γx)
(γ − θ)2(w − θx)

Thus,

x∗ = −
[

θ2 − θ2γ + πθ2γ − 2πθγ + πγ2

θ (θ − πγ) (θ − γ)

]
w

So,
∂x
∂w

= −
[

θ2 − θ2γ + πθ2γ − 2πθγ + πγ2

θ (θ − πγ) (θ − γ)

]
In general, to analyse the effect of w on x, let y = w − θx and z = w − θx − γ(w −

x)

∂x
∂w

=
θ(1 − π)v′′(y) + (θ − γ)(1 − γ)πv′′(z)

θ2(1 − π)v′′(y) + (θ − γ)2πv′′(z)︸ ︷︷ ︸
D

= −θ(1 − π)v′(y)
D

[
−v′′(y)

v′′(z)
+ (1 − γ)

v′′(z)
v′(z)

]
= −θ(1 − π)v′(y)

D
[RA(y)− (1 − γ)RA(z)] .

Observation
We know that RA(y) ≤ RA(z). However, unless γ ≥ 1, we cannot determine the

sign of ∂x
∂w . If γ ≥ 1, then ∂x

∂w ≥ 0.

∂(x/w)

∂w
= −θ(1 − π)v′(y)

w2D
[R(y)− R(z)]︸ ︷︷ ︸

∆R

.
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Thus, the variation in the declared fraction (whether it increases, remains constant,
or decreases) depends solely on ∆R.
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Suggested exercises

Exercise 5. Manuel has a Bernoulli utility function given by vM(x) =
√

x, while Car-
los’s utility function is vC(x) = ln x. Both functions are defined for all x > 0.

1. Is Manuel more risk-averse than Carlos? Justify.

2. Consider the following situation. There are two states of the world: the bad state
occurs with probability 1/2, and the good state occurs with the complementary
probability. Both Manuel and Carlos have an initial wealth of w > 0 soles.
Wealth remains at its original level in the good state. However, if the bad state
occurs, both suffer a loss of ℓ = w (i.e., the loss in the bad state is total). Before
the state of nature is known, Manuel and Carlos decide how many units of
insurance to buy. One unit of insurance costs t soles, where 1/2 < t < 1,
and pays one sol if the bad state occurs. Solve for how many units Manuel
and Carlos each purchase. Compare and conclude who would be preferred
as a client in a non-competitive world where clients can be selected. Note: if
insurance is purchased, the premium is paid in any state.

Exercise 6. Consider a decision-maker with an initial wealth of w who may lose 1
unit of wealth with probability p. This individual can purchase insurance, which
is a divisible good. One unit of insurance costs q and covers one unit of loss if it
occurs. We wish to understand their demand for insurance. Let θ denote the amount
of insurance they purchase.

1. Argue why their expected utility is given by

v(w − qθ)(1 − p) + v(w − qθ − (1 − θ))p,

where v(·) is the basic utility function.

2. Consider the case of an actuarially unfair price, where q > p. This scenario
is common because the insurance company needs to cover its operating costs.
Under these conditions, show that the decision-maker buys only partial insur-
ance, that is, θ < 1. Assume that v is strictly increasing and strictly concave
(reasonable assumptions).

3. Now consider the case of q = p, the actuarially fair price. This price is signifi-
cant in the literature as it represents the competitive price, assuming insurance
companies have no additional costs. In this scenario, show that the decision-
maker buys full insurance (θ = 1).

Exercise 7. The continuous case of Exercise 1. Consider an investor with an initial
wealth w. There is a risky asset that provides a return of z per dollar invested. Let F
be the cumulative distribution function (CDF) of z. Let α denote the amount invested
in the risky asset. Let v(·) represent the investor’s basic utility function. You are
asked to:
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1. Determine the investor’s expected utility.∫
v(w + α(z − 1)) dF(z).

2. Derive the first-order condition for the optimal level of investment α∗.

3. Consider the case where the expected net return is non-positive, i.e., E[z]− 1 ≤
0. Show that, in this case, the optimal investment is α∗ = 0.

4. Consider the case where the expected net return is positive, i.e., E[z]− 1 > 0.
Show that, in this case, the investment α = 0 is not optimal.

5. Demonstrate that if the investor has a higher degree of risk aversion, they will
invest less in the risky asset. To do this, consider two investors with Bernoulli
utility functions v1 and v2, where v1 = g ◦ v2 with g concave and increasing.
Show that the optimal investment level α∗1 for v1 is less than or equal to the
optimal investment level α∗2 for v2.

Hint: recall that, under mild assumptions,4

d
dx

(∫ b(x)

a(x)
f (x, t)dt

)
= f (x, b(x))b′(x)− f (x, a(x))a′(x) +

∫ b(x)

a(x)

∂ f
∂x

(x, t)dt. (1)

Equation (1) is known as Leibniz rule.

Exercise 8. Adapted from MIT Microeconomic Theory III. Ann has constant absolute risk
aversion γ > 0 and an initial wealth w. She can buy shares of two divisible assets sold
at unit price. One of the assets pays a dividend X ∼ N(2µ, σ2) and the other pays a
dividend Y ∼ N(µ, σ2), where X and Y are independently distributed and µ > 1. She
can buy any amount of shares of each asset and may hold part of her initial wealth
in cash. Find the optimal portfolio for Ann.

Exercise 9. Adapted from Mas-Colell, Whinston and Green 1995. Consider a risk pref-
erence ⪰ that has an expected utility representation with a continuous, increasing
Bernoulli utility function u. Prove that the following statements are equivalent:

1. ⪰ exhibits risk aversion.

2. CE⪰(X) ≤ E[X] for any random variable X, where CE⪰(X) is the certainty
equivalent, i.e., the sure value such that the agent is indifferent between receiv-
ing this value or facing the lottery X.

3. RP⪰(X) ≥ 0 for any random variable X, where RP⪰(X) is the risk premium,
i.e., the maximum amount an individual would be willing to pay to eliminate
the risk associated with the lottery X.

4.
∫

u(x) dF(x) ≤ u (
∫

x dF(x)) for any distribution F.

4 f (x, t), fx(x, t) continuous, and a(x), b(x) C1.
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5. The function u is concave.

Exercise 10. Adapted from Mas-Colell, Whinston and Green 1995. Consider two individ-
uals choosing between two monetary lotteries. Define that the utility function v∗(·)
is strongly more risk-averse than v(·) if and only if there exists a positive constant k
and a non-increasing concave function g(·) such that v∗(x) = kv(x) + g(x) for all x.
Show that if v∗(·) is strongly more risk-averse than v(·), then v∗(·) is more risk-averse
than v(·) in the usual Arrow-Pratt sense. Hint: compare the Arrow-Pratt coefficients
of both utility functions.

Exercise 11. Adapted from Varian 1992. A consumer faces two risks and can only elim-
inate one of them. That is, let w̃ = w1 with probability p > 0 and w̃ = w2 with
probability 1 − p. Let ϵ̃ = 0 if w̃ = w2, and, if w̃ = w1, then ϵ̃ = ϵ with probability
1/2 and ϵ̃ = −ϵ with probability 1/2. Define the risk premium πv associated with ϵ̃

as the number such that

E[v(w̃ − πv)] = E[v(w̃ + ϵ̃)].

1. Show that if ϵ → 0,

πv =
−1

2 pv′′(w1)ϵ
2

pv′(w1) + (1 − p)v′(w2)
. (2)

Hint: consider a first-order Taylor expansion for the term on the left side of (2)
and a second-order expansion for the term on the right side.

2. Let v1(w) = e−aw and v2(w) = e−bw. Calculate the Arrow-Pratt coefficient
(ARA) of v1 and v2.

3. Suppose that a > b. Show that if p < 1, there exists a sufficiently large value of
w1 − w2 such that πv2 > πv1 .

Exercise 12. Adapted from Gallardo 2018. A question of great interest is whether the
expected utility Ue depends, in certain cases, solely on E[X] = µ and E[X2] = σ2

(regardless of other parameters of the model). Here, X is a random variable. Recall
that

Ue =


N

∑
i=1

piu(xi) (discrete distribution case)∫ b

a
u(x) f (x) dx (continuous distribution case)

Below, two situations are presented in which Ue depends solely on µ and σ2. One
corresponds to a discrete distribution, and the other to a continuous distribution.
Consider

u(x) = k0 + k1x − k2

2
x2, k1, k2 > 0, k0 ∈ R. (3)

1. Show how the quadratic utility function given by (3) results in an expression for
Ue that depends solely on the mean µ and variance σ2 of the discrete distribu-
tion.
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2. Explain the relationship between the derivative of the mean dµ
dσ and risk aver-

sion. Hint: prove that

dµ

dσ
=

σk2

k1 − k2µ
, k1 − k2µ ̸= 0.

3. For the continuous case, show that

Ue = −
∫

R

1√
2πσ

e−
(x−µ+aσ2)2

2σ2 e
−2µaσ2+a2σ4

2σ2 dx

= −e
a2σ2−2µa

2 .

when the utility function is u(x) = −e−ax and the distribution f (x) is normal
with mean µ and variance σ2.

Solution:

Ue =
N

∑
i=1

piu(xi)

=
N

∑
i=1

pi

(
u(µ) + u′(µ)(xi − µ) +

u′′(µ)

2!
(xi − µ)2

)

= u(µ) +
u′′(µ)

2
σ2 = k0 + k1µ − k2

2
(µ2 + σ2).

We also note that:
dµ

dσ
=

σk2

k1 − k2µ
,

which implies that increases in σ generate more than proportional increases in µ.
This is a consequence of risk aversion. Moving to the continuous context:

Ue =
∫

R
u(x) f (x) dx, u(x) = −e−ax, a > 0, f (x) =

1√
2πσ

e−
(x−µ)2

2σ2 .

Thus:

Ue =
∫

R
−e−ax 1√

2πσ
e−

(x−µ)2

2σ2 dx

= −
∫

R

1√
2πσ

e
−2σ2ax+x2−2xµ+µ2

2σ2 dx.

Rearranging:

x2 + µ2 + 2(σ2a − µ) = x2 − 2(µ − σ2a)x + µ2 = (x − µ + aσ2)2 + 2µaσ2 − a2σ4,

we conclude that:
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Ue = −
∫

R

1√
2πσ

e−
(x−µ+aσ2)2

2σ2 e
−2µaσ2+a2σ4

2σ2 dx

= −e
a2σ2−2µa

2 .
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Advanced exercises

Exercise 13. Adapted from Mas-Colell, Whinston and Green 1995. Consider a decision-
maker with a utility function u(·) defined over RL

+.

a) Argue why the concavity of u(·) can be interpreted as the decision-maker ex-
hibiting risk aversion with respect to lotteries whose outcomes are bundles of
the L basic goods (commodities).

b) Now suppose that a Bernoulli utility function v(·) for wealth is derived from the
maximization of a utility function defined over commodities for each given level
of wealth w, with commodity prices fixed. Show that if the utility function for
commodities exhibits risk aversion, then the derived Bernoulli utility function
for wealth also exhibits risk aversion. Interpret.

c) Argue why the converse of part (b) need not be true. That is, there are non-
concave functions u : RL

+ → R such that, for any price vector, the Bernoulli
utility function for wealth exhibits risk aversion.

Exercise 14. Adapted from Mas-Colell, Whinston and Green 1995. Suppose we have N
risky assets whose returns zn (n = 1, . . . , N) per dollar invested are jointly distributed
according to the distribution function F(z1, . . . , zN). Assume also that all returns
are non-negative with probability one. Consider an individual with a continuous,
increasing, and concave Bernoulli utility function v(·) over R+. Define the expected
utility function Ue(·) of this investor over RN

+ , the set of all non-negative portfolios,
as follows:

Ue(α1, . . . , αN) =
∫

v(α1z1 + · · ·+ αNzN) dF(z1, . . . , zN).

Show that Ue(·) is:

• Increasing.

• Concave.

• Continuous.

Hint: apply dominated convergence theorem for the last item.

Exercise 15. Adapted from IMPA, Introduction to Mathematical Economics lecture notes.
Consider an investor who is constructing a portfolio composed of k assets. The vari-
ance of the portfolio return is given by Var

(
∑k

i=1 αi Ai

)
, where αi is the proportion

invested in asset i, Ai is the return of asset i, and Σ is the covariance matrix of the as-
set returns. Formulate and solve the portfolio risk minimization problem. Remember
that the expected return is equal to µ0 and that the sum of the invested proportions
is equal to 1. Use the method of Lagrange multipliers to find the optimal proportions
αi.
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