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1 Selected Exercises
Exercise 1.1. Consider the classical utility maximization problem in Rn

max u(x)
s. t : p · x ≤ I

x ≥ 0.

Obtain the first order conditions associated to L. You can start considering n = 2. This
is u(x) = u(x1, x2). Assume u(·) is differentiable.

Solution: classical first order conditions lead to:

∂u(x∗)

∂xi

− λ∗pi + µ∗
i = 0, i = 1, ..., n (1)

λ∗

(
I −

n∑
i=1

pix
∗
i

)
= 0 (2)

I −
n∑

i=1

pix
∗
i ≥ 0 (3)

µ∗
ix

∗
i = 0, i = 1, ..., n (4)

λ∗, µ∗
1, ..., µ

∗
n ≥ 0. (5)
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On the other hand, applying FOC to L:

∂u(x∗)

∂xi

− λ∗pi ≤ 0, i = 1, ..., n (6)

I −
n∑

i=1

pix
∗
i ≥ 0 (7)

x∗
i

(
∂u(x∗)

∂xi

− λ∗pi

)
= 0, i = 1, ..., n (8)

λ∗

(
I −

n∑
i=1

pix
∗
i

)
= 0. (9)

Exercise 1.2. Solve the utility maximization problem for

u(x1, x2) = x1 + x2

in terms of p1, p2 and I. Hint : apply KKT theorem. Why can’t you ensure that Lagrange
is enough?

Solution: FOC for nonnegativity constraints lead to

1− λ∗p1 ≤ 0

1− λ∗p2 ≤ 0

I − p1x
∗
1 − p2x

∗
2 ≥ 0

x∗
1(1− λ∗p1) = 0

x∗
2(1− λ∗p2) = 0

λ∗(I − p1x
∗
1 − p2x

∗
2) = 0,

Where λ∗ ≥ 0. Now, since the utility function is strictly increasing in its arguments,
we must have I − p1x

∗
1 − p2x

∗
2 = 0. However, we cannot conclude that x∗

1 and x∗
2 are

strictly positive (unlike the case where u is, for example, of the Cobb-Douglas type).
What we can affirm is that x∗

1, x
∗
2 ̸= 0. Indeed, x∗

1 = x∗
2 = 0 implies that I = 0, which is

a contradiction. Thus, we must analyze only three cases: x∗
1, x

∗
2 > 0, x∗

1 > 0, x∗
2 = 0, and

x∗
1 = 0, x∗

2 > 0.
Note that in any of the three situations, the regularity condition holds, as the matrices

[
−p1 −p2

]
,

[
−1 0
−p1 −p2

]
and

[
0 −1

−p1 −p2

]
have full row rank.

Let’s analyze each case individually. If x∗
1, x

∗
2 > 0,

λ∗ =
1

p1
=

1

p2
.

This only makes sense if p1 = p2 = p. Thus, x∗
1 and x∗

2 are strictly positive only if p1 = p2.
In that case,

λ∗ =
1

p
, x∗

1 ∈
]
0,

I

p

]
, x∗

2 =
I − px∗

1

p
. (10)
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Moreover, u(x∗
1, x

∗
2) = I/p. Note that (10) implies that x∗

1 and x∗
2 can take an infinite

number of values, which implies an infinite number of optimal bundles!
Now, suppose that x∗

1 > 0 but x∗
2 = 0. In this case, x∗

1 = I/p1 and λ∗ = 1/p1. Then,
since

1− λ∗p2 = 1− p2
p1

≤ 0

we deduce that p1 ≤ p2. Thus, when p1 ≤ p2

(x∗
1, x

∗
2, λ

∗) =

(
I

p1
, 0,

1

p1

)
. (11)

Finally, if x∗
2 > 0 but x∗

1 = 0, the situation is similar to case 2, and we have that,
when p2 ≥ p1

(x∗
1, x

∗
2, λ

∗) =

(
0,

I

p2
,
1

p2

)
. (12)

In summary, there are 3 possible situations:

1. p2 < p1: (x∗
1, x

∗
2) =

(
I
p1
, 0
)

2. p1 > p2: (x∗
1, x

∗
2) =

(
0, I

p2

)
3. p1 = p2: Combining (10) with (11) and (11), we deduce that any point (x∗

1, x
∗
2) on

the budget line generates the same utility, and therefore, any point on the budget
line constitutes a solution to the problem.

Let us briefly interpret the results. If p1 > p2, it is more expensive to consume good 1.
Therefore, the consumer will substitute1 all consumption of good 1 by consuming only
good 2. Conversely, if p2 > p1, they will do the opposite, consuming only good 1. Finally,
in the case p1 = p2 = p, they will consume any convex combination of the points

(
I
p
, 0
)

and
(
0, I

p

)
(x∗

1, x
∗
2) = θ

(
I

p
, 0

)
+ (1− θ)

(
0,

I

p

)
, θ ∈ [0, 1],

since they generate the same utility.

Exercise 1.3. Solve the following maximization problem,

max x1x2

s. t. x1 + x2
2 ≤ 2

x1, x2 ≥ 0.

Solution: first, since the feasible region is bounded and closed (hence compact), and the
objective function is continuous, Weierstrass theorem ensures the existence to a solution.

1Indeed, the linear utility function is also known as a utility of perfect substitutes.
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Then, non negativity first order constraints lead to (we omit ∗):

∂L

∂x1

= x2 − λ ≤ 0

∂L

∂x2

= x1 − 2λx2 ≤ 0

x1
∂L

∂x1

= x1(x2 − λ) = 0

x2
∂L

∂x2

= x2(x1 − 2λx2) = 0

x1
∂L

∂λ
= x1(2− x1 − x2

2) = 0

λ
∂L

∂xλ
= λ(2− x1 − x2

2) = 0.

If λ = 0, then x1x2 = 0, but, this is not optimal since f takes positive values. Thus,
λ > 0. It follows that

2− x1 − x2
2 = 0

x2 = λ.

Moreover, since x2 = λ,

2− x1 − x2
2 = 0

x1 − 2x2
2 = 0.

The solutions to this pair of nonlinear equations are

(x∗
1, x

∗
2) =


(

4
3
,
√

2
3

)
(

4
3
,−
√

2
3

)
Finally, since λ ≥ 0, the solution is (

4

3
,

√
2

3

)
.

Exercise 1.4. Medium difficulty. Consider the following optimization problem,

min −
n∑

i=1

ln(αi + xi)

s. t.
n∑

i=1

xi = 1

xi ≥ 0,

where αi > 0 are parameters. Solve this problem applying KKT (non negativity
constraints).
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Solution: note first that this is a mixed problem since we have equality and inequality
constraints. You can consult the bibliography for a more detailed analysis on this subject.
Nonetheless, what you can do, is to create artificially the constraints

∑
i xi ≤ 1 and∑

i xi ≥ 1, which combined lead to
∑

i xi = 1. Now, let us solve this problem using the
classical Lagrangian. It is your homework to proceed via L and obtain the same results.
Hence, let

L(x, λ, µ) = −
n∑

i=1

ln(αi + xi) + λ

(
n∑

i=1

xi − 1

)
−

n∑
i=1

µixi.

KKT FOC provide

− 1

αi + xi

− µi + λ = 0

n∑
i=1

xi = 1

µixi = 0.

If, for some i, µi = 0, then

xi =
1

λ
− αi.

Note that λ ≥ 0 since λ = 1
αi+xi

for all i. Now, xi ≥ 0 iff λ ≤ 1
αi

. If xi = 0, then

µi = − 1

αi

+ λ,

which is positive iff λ ≥ 1/αi. Now, if λ ≥ 1/αi, xi cannot be positive since, if it was the
case,

µi = λ− 1

αi + xi

> 0.

Which violates µixi = 0. Thus, if xi > 0, λ ∈ (0, 1/αi). Therefore,

xi = max{λ− 1/αi, 0}.

Finally, s ∑
i

xi =
∑
i

max{λ− 1/αi, 0} = 1.

There is no closed formula for λ but, we can ensure its existence since
∑

i max{θ−αi, 0} =
g(θ) is piecewise linear, continuous and increasing, with breakpoints αi.

Exercise 1.5. Formulate the respective optimization problems (derive KKT first order
conditions):

1. Expenditure minimization problem.

2. Profit maximization problem.

3. Cost minimization problem.

In each case, assume differentiability.

5



Solution: the expenditure minimization problem is

min
n∑

i=1

pixi

s.t. : u(x1, · · · , xn) ≥ u

x1, · · · , xn ≥ 0.

Note that this is equivalent to

max −
n∑

i=1

pixi

s.t. : − u(x1, · · · , xn) ≤ −u

− x1, · · · ,−xn ≤ 0.

L(x, λ, µ) = −
n∑

i=1

pixi + λ(−u+ u(x1, ..., xn)︸ ︷︷ ︸
=u(x)

)−
n∑

i=1

µixi.

Hence, FOC provide

−pi + λ
∂u

∂xi

− µi = 0

µixi = 0

µi ≥ 0

λ(u(x)− u) = 0

−u(x) ≤ u.

Note that, in this case, FOC appled to L = −p · x+ λ(u(x)− u) are

pi − λ
∂u

∂xi

≥ 0

xi

(
pi − λ

∂u

∂xi

)
= 0

λ(u(x)− u) = 0

u(x) ≥ u.

With respect to the profit maximization problem

max
x≥0

pf(x1, · · · , xn)−
n∑

i=1

pixi,

FOC provide

p
∂f

∂xi

− wi − µi = 0.

p
∂f

∂xi

− wi − µi = 0.
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Hence,

p
∂f

∂xi

− wi ≥ 0.

Finally, cost minimization problem, which is very similar to the expenditure minimization
problem,

min
n∑

i=1

wixi

s.t. f(x1, · · · , xn) ≥ q

x1, · · · , xn ≥ 0

leads to the same formulation just changing wi by pi, f(x) by u(x) and u by q.

Further references at Columbia Lecture Notes.

2 Additional exercises
We provide hints for some of the additional exercises.

Exercise 2.1. Medium difficulty. With respect to the utility maximization problem,
explain why Inada conditions, given below, ensure that it can be solved by Lagrange.

1. u(0) = 0

2. u differentiable and concave

3. ∂u(x∗)/∂xi > 0 ∀ i = 1, . . . , n

4. limxi→0+ ∂u(x)/∂xi = ∞, ∀ i = 1, ..., n

5. limxi→∞ ∂u(x)/∂xi = 0, ∀ i = 1, ..., n.

Hint : condition 4 is key.

Since limxi→0+ ∂u(x)/∂xi = ∞, ∀ i = 1, ..., n, you can prove, using the definition of
derivative as a limit, that x∗

i > 0. Hence, Lagrange can be applied since the associated
µ∗
i = 0. Differentiability is key and the condition u(0) = 0 is used for the EMP.

Exercise 2.2. Solve the following optimization (utility maximization) problems:

1. max x1x2 s.t. x1 + x2 ≤ 1, x1, x2 ≥ 0.

2. max lnx1 + lnx2 s.t. 2x1 + 3x2 ≤ 5, x1, x2 > 0.

3. max min{x1, 2x2} s.t. x1 + x2 ≤ 2.

Hint : argue why you can apply Lagrange instead of KKT. In the last one, you can’t
apply neither Lagrange or KKT, why?

You can apply in both cases (1, 2) Lagrange since both utility functions satisfy Inada
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conditions. The first one is a Cobb-Douglas xayb. It is well known that the solution is

x∗ =
aI

px(a+ b)

y∗ =
bI

py(a+ b)
.

Hence,

x∗
1 =

1

2

y∗ =
1

2
.

In the second case, since lnx1 + lnx2 is equivalent to x1x2 (strictly monotone
transformation of the utility), the solution is

x∗
1 =

1

2 · 2
=

1

4

y∗ =
1

2 · 3
=

1

6
.

Finally, since min{x1, x2} is not differentiable, the procedure is ad-hoc. At the optimum,
x1 = 2x2. Hence, since Leontief preference is monotone,

2x2 + x2 = 2 =⇒ x∗
2 =

2

3
=⇒ x∗

1 =
4

3
.

Exercise 2.3. Medium difficulty. Thomas Sargent (Tom) has the following utility
function:

u(x) =
n∏

i=1

xαi
i , 0 < αi < 1,

n∑
i=1

αi = 1.

Solve Tom’s maximization problem considering p ∈ Rn
++ and I > 0. Obtain the

Marshallian demands for each good consumed by Tom and verify Roy’s identity.

Applying Largange you can check that the solution is

x∗
i =

Iαi

pi
∑n

i=1 αi

=
αiI

pi
.

Exercise 2.4. High-difficulty, not assessable exercise. Requires some elements
from Microeconomic I and the Enveloppe Theorem. Tirole’s expenditure function
is given by:

e(p, u) = exp

{
L∑

ℓ=1

αℓ ln(pℓ) +

(
L∏

ℓ=1

pβℓ

ℓ

)
u

}
, p ∈ RL

++.

Assume (this is known as the duality theorem) that e(p, V (p, I)) = I, where I is the
income in the utility maximization problem and V is the indirect utility function. Derive
Tirole’s indirect utility function and verify Roy’s identity. Impose any conditions you
deem appropriate on the parameter vector (α,β)2. Hint : you should find that βℓ = 0 for
every ℓ and that

∑
ℓ αℓ = 1.

2Recall that expenditure functions are concave with respect to prices, non-decreasing in pℓ, and
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We have that

V (p, I) =
ln I −

∑L
ℓ=1 αℓ ln pℓ∏L

ℓ=1 p
βℓ

ℓ

.

V (p, I) = ln I −
L∑

ℓ=1

αℓ ln pℓ = ln

(
L∏

ℓ=1

I1/L

pαℓ

)
Now, to simplify the work, given that e must satisfy the aforementioned properties
(homogeneity of degree 1, increasing in prices, strictly increasing in the utility level),
βℓ = 0 for all ℓ and

∑L
ℓ=1 αℓ = 1. Indeed,

∂e

∂pi
=

e(p, u)

pi

(
αi + uβi

L∏
ℓ=1

pβℓ

ℓ

)
.

Since this derivative must be positive, αi, βi ≥ 0. Then,

e(λp, u) = λ
∑

ℓ αℓ exp

{∑
ℓ

αℓpℓ + λ
∑

ℓ βℓu

L∏
ℓ=1

pβℓ

ℓ

}
.

This must hold for all p and u, in particular p = (1, · · · , 1) and u = 1. Thus,

ln e(p, u) =

(∑
ℓ

αℓ

)
lnλ+ λ

∑
ℓ βℓ

lnλe(p, u) = lnλ+ 1.

In this way,
∑

ℓ αℓ = 1 and
∑

ℓ βℓ = 0. Then, βℓ = 0 for all ℓ. We conclude then, applying
Roy’s identity and replacing with the parameters, that the ordinary demand in Tirole is

x∗ =

(
I

α1

, · · · , I

αL

)
.

Exercise 2.5. Medium-difficulty, not assessable exercise. Requires Cramer
rule and differentiation. Consider the utility maximization problem with p1, p2, I > 0

and u ∈ C2(R2). Additionally, assume that
∂2u

∂x2
i

< 0,
∂u

∂xi

> 0, and
∂2u

∂x1∂x2

> 0, i = 1, 2.

Assume that x∗ ∈ R2
++ satisfies the Lagrange equations. Using the method of differentials

(comparative statics), determine the effect (whether positive, negative, or inconclusive)

of
∂x∗

2

∂I
, where (x∗

1, x
∗
2) is the solution to the utility maximization problem considered.

Provide an interpretation.

The Lagrange equations at the (or an) optimal point provide

ux1 − λp1 = 0

ux2 − λp2 = 0

I − p1x1 − p2x2 = 0.

increasing in u.
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Differentiating,

ux1x1dx1 + ux1x2dx2 − dλp1 − λdp1 = 0

ux2x2dx2 + ux1x2dx1 − dλp2 − λdp2 = 0

dI − dp1x1 − p1dx1 − dp2x2 − p2dx2 = 0.

Then, ux1x1 ux1x2 −p1
ux1x2 ux2x2 −p2
−p1 −p2 0


︸ ︷︷ ︸

=A

dx1

dx2

dλ

 =

 λdp1
λdp2

x1dp1 + x2dp2 − dI

 .

Applying Cramer’s rule and canceling the effects that are not of interest,

dx1 =
1

|A|

∣∣∣∣∣∣
0 ux1x2 −p1
0 ux2x2 −p2

−dI −p2 0

∣∣∣∣∣∣ = ux1x2p2 − p1ux2x2

|A|
dI > 0.

The assumptions are those that ensure ux1x2p2−p1ux2x2

|A| > 0. Thus, dx1

dI
> 0 (as expected:

income effect).
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