

Solutions to the Second Test

Microeconomics 2 Semester 2024-2 September 30

Professor: Pavel Coronado Castellanos pavel.coronado@pucp.edu.pe Teaching Assistants: Marcelo Gallardo & Fernanda Crousillat marcelo.gallardo@pucp.edu.pe https://marcelogallardob.github.io/ a20216775@pucp.edu.pe

Exercise 1 (4 points). For items (1) and (2), analyze if the statement is true or not and justify. For (1), (3) and (4), give the Pareto optimal allocations as a detailed draw.

- 1. In a 2 × 2 economy, if preferences are represented by $u_i(x_{1i}, x_{2i}) = \exp(x_{1i}^2 + x_{2i}^2)$, then the Pareto set does not exist.
- 2. Alice and Bob's utilities are

$$U^A(x_1^A, x_2^A) = x_1^A, \quad U^B(x_1^B, x_2^B) = x_2^B.$$

Then, $\mathbf{x} = \{(3,3), (0,0)\}$ is a Pareto optimal allocation.

- 3. Alice and Bobs' utilities are $u_A(x^A, y^A) = \ln x^A + y^A$ and $u_B(x^B, y^B) = x^B$. Find Pareto optimal allocations.
- 4. Obtain the contract curve for a 2×2 economy in which

$$\underbrace{u_i(x_i, y_i) = (x_i - 1)^{\beta_1} (y_i - 1)^{\beta_2}}_{\text{Stone-Geary utility function}}, \ \beta_i > 0$$

and $\omega_1 = (3, 2), \, \omega_2 = (2, 3).$

Solution:

1.a) False: the Pareto set is the frontier of the Edgeworth box. See the following figure.

1.b) False, $\{(3,0), (0,3)\}$ strictly dominates the initial allocation.

1.c) The Pareto set (drawing the indifference curves) is the upper side of the Edgeworth box. See the following figure.

1.d) Applying $MRS_1 = MRS_2$, and $x_1 + x_2 = 5 = y_1 + y_2$, we easily compute $\mathcal{P} = \{(x_1, y_1) \in [0, 5]^2 : y_1 = x_1\} \cap S$ where S is determined by the endowments. See the following figure.

Exercise 2 (4 points.). Consider a Robinson Crusoe economy where

$$u(\ell_o, c) = \sqrt{\ell_o c}$$
$$f(\ell_t) = \sqrt{\ell_t}$$
$$\bar{\ell} = 24.$$

Remember that $\ell_t + \ell_o = \overline{\ell}$.

- 1. Solve the problem in a centralized manner. This involves directly substituting the constraints into the optimization problem, all in terms of ℓ_t . Be clear why the solution is or (is not) interior.
- 2. Solve the problem from a market perspective.

Solution:

2.1) The centralized problem is

$$\max_{0 \le \ell_t \le \overline{L}} \ \ell_t^{1/4} (24 - \ell_t)^{1/2}.$$

First order condition leads to $\ell_t = 8$, $\ell_o = 16$ and $c = \sqrt{8}$.

2.2) Via the market, profits maximization leads to the following problem:

$$\max_{\ell_t \in [0,24]} p\sqrt{\ell_t} - w\ell_t$$

Again, by Inada condition the solution is interior an FOC applied. We obtain $\ell_t^d = \frac{p^2}{4w^2}$. Hence, $\Pi = \frac{p^2}{4w}$ and $c^s = \frac{p}{2w}$. On the other hand, optimal demands (since we are working with Cobb-Douglas) are $\ell_o^d = \frac{1}{2w}(\Pi + 24w)$ and $c^d = \frac{1}{2p}(\Pi + 24w)$. Clearing the first markets leads to $p/w = 4\sqrt{2}$ and, as in the first item, $\ell_t = 8$, $\ell_o = 16$ and $c = \sqrt{8}$. **Exercise 3 (6 points).** Consider an economy called Sommerville, consisting of two consumers (Carlos and Brik), two goods, and a firm. The agents consume two goods: papers (x) and books (y). However, the agents only have initial endowments of papers, $\omega_1 = (3,0)$ and $\omega_2 = (2,0)$ respectively. On the other hand, the only firm produces books with the following technology

$$Y = \{(x, y) \in \mathbb{R}^2 | x \le 0, y \le \sqrt{-x}\}.$$

Moreover, the preferences of the consumers are represented by $u_1(x_1, y_1) = \sqrt{x_1y_1}$ and $u_2(x_2, y_2) = 2 \ln x_2 + \ln y_2$, respectively. Shares are $\boldsymbol{\theta} = (\theta_1, \theta_2) = (0.5, 0.5)$.

- a) Find the firm's input demand function for papers (x^d) , the firm's supply function (y^s) , and the profits π^* .
- b) Find the demands for goods x and y for each consumer.
- c) Find the Walrasian equilibrium, this is, the quantities consumed by each agent for each good, the input quantity used (x), and the firm's production (y).

Solution:

3) The firm's demand function for the input will be denoted as x^d , and the firm's supply is y^s . The optimization problem is

$$\max_{(x,y)} \Pi = p_x x + p_y y, \text{ s.t. } y \le \sqrt{-x}, x \le 0.$$

Thus, the firm's problem reduces to (the solution is certainly on the boundary)

$$\max_{(x,y)} \Pi = p_x x + p_y \sqrt{-x}, \text{ s.t. } x \le 0.$$

The Lagrangian is given by

$$\mathcal{L} = p_x x + p_y \sqrt{-x} - \lambda x.$$

The FOCs provide

$$\frac{\partial \mathcal{L}}{\partial x} = 0 \implies p_x - \frac{p_y(-x)^{-1/2}}{2} - \lambda = 0$$

and

$$\lambda x = 0.$$

If $\lambda = 0$, then x < 0. If $\lambda > 0, x = 0$. We are only interested in the first case.

$$\begin{aligned} x^d &= -\left(\frac{p_y}{2p_x}\right)^2\\ y^s &= -\sqrt{x^d} = \frac{p_y}{2p_x}\\ \Pi^* &= \frac{p_y^2}{4p_x}. \end{aligned}$$

Regarding the consumers, we must solve

$$\max_{x_i, y_i} u(x_i, y_i)$$

s.t. $p_x x_i + p_y y_i = p_x \omega_x + \theta_i \Pi^*$.

Given that the utility functions are Cobb-Douglas type

$$x_1^d = \frac{1}{2} \left(\frac{3p_x + \Pi^*/2}{p_x} \right)$$
$$y_1^d = \frac{1}{2} \left(\frac{3p_x + \Pi^*/2}{p_y} \right)$$
$$x_2^d = \frac{2}{3} \left(\frac{2p_x + \Pi^*/2}{p_x} \right)$$
$$y_2^d = \frac{1}{3} \left(\frac{2p_x + \Pi^*/2}{p_y} \right)$$

Normalizing $p_x = 1$ and replacing the expression of Π ,

$$x_1^d = \frac{1}{2} (3 + p_y^2/8)$$

$$y_1^d = \frac{1}{2} (3/p_y + p_y/8)$$

$$x_2^d = \frac{2}{3} (2 + p_y^2/8)$$

$$y_2^d = \frac{1}{3} (2/p_y + p_y/8).$$

Finally, applying Walras' law for this context:

$$y_1^d + y_2^d - y^s = 0$$

$$\frac{1}{2} (3/p_y + p_y/8) + \frac{1}{3} (2/p_y + p_y/8) - \frac{p_y}{2} = 0$$

$$\frac{24 + p_y^2}{16p_y} + \frac{16 + p_y^2}{24p_y} = \frac{p_y}{2}$$

$$\frac{104 + 5p_y^2}{48p_y} = \frac{p_y}{2}$$

$$104 + 5p_y^2 = 24p_y^2$$

$$104 = 19p_y^2$$

we obtain $p_y = 2.3$. Thus,

$$(x_1^*, y_1^*) = (1.8, 0.8), \ (x_2^*, y_2^*) = (1.8, 0.4), \ x^{*d} = 1.4, \ \text{and} \ y^{*s} = 1.2.$$

Exercise 4 (4 points). In the Economics Department at PUCP, the only seller of algorithms (x), Manuel, faces a demand curve given by x = a - bp, where a, b > 0 and p is the price per algorithm sold. We assume that an algorithm is a perfectly divisible good, so $x \in \mathbb{R}_+$. Manuel has a quadratic cost function $C(x) = 2x^2 + 10x + \overline{c}$ in the number of algorithms sold ($\overline{c} > 0$ is a parameter).

1. Find the quantity of algorithms that Manuel sells (x^m) and the price at which he sells them (p^m) . Remember that Manuel, given the context, operates as a monopolist. Your answer will depend on a and b. For your answer to make sense $(x^m \ge 0)$, which is the relation that a and b must satisfy?

- 2. What happens with x^m and p^m if b increases?
- 3. If the fixed cost changes to $2\overline{c}$, do any of the previous answers changes? Why?

Solution:

4.1) Solving $\max_{x\geq 0} \left\{ \left(\frac{a-x}{b}\right) x - C(x) \right\}$, we obtain $x^m = \frac{a-10b}{2+4b} > 0$ and $p^m = \frac{a}{b} - \frac{x^m}{b} = \frac{4ab+a+10b}{2b(2b+1)} > 0$, provided that a > 10b.

4.2) We directly compute

$$\frac{dx^m}{db} = -\frac{4a+20}{(2+4b)^2} < 0.$$

Finally,

$$\frac{dp^m}{db} = -\frac{8ab^2 + 20b^2 + 4ab + a}{2b^2(2b+1)^2} < 0.$$

4.3) Nothing happens, fixed costs won't change x^m or p^m , the only change is Π^m , but we never asked for Π^m in the previous items.

4.3) Answers don't change, fixed costs won't change the monopolist optimal level of production (so the optimal price neither).

Exercise 5 (2 points). Give an example of a weak Pareto optimal allocation which is not a Pareto optimum. Consider only continuous and monotone preferences.

Solution:

5) Consider $u_1(x_1, y_1) = f(x_1 + y_1)$, with f' > 0 and $u_2(x_2, y_2) = \min\{ax_2, ay_2\}, a > 0$ Then, $\{(0,0), (2.5,3)\}$ is a weak Pareto optimum but not a Pareto optimum. 0. Other admissible solutions are, for instance, $u_1(x_1, y_1) = f(x_1 + y_1)$ and $u_2(x_2, y_2) =$ $c \max\{x_2, y_2\}$, with c > 0 or both $\max\{\cdot, \cdot\}$.

Viernes económicos (2 points)

- a) El Perú es el **segundo** país líder en el mundo en la emisión de créditos de carbono forestal.
- b) COFIDE, al ser el Banco de Desarrollo del Perú, busca financiar proyectos que no tengan solo un impacto económico, sino que también tengan un impacto sostenible.