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This document is based on numerous sources. Its fundamental structure

is derived from the �Advanced Microeconomics, Module 1� course taught by

Professor Alejandro Lugón at PUCP, and the lecture notes of the course Mi-

croeconomics 2, taught by professor Pavel Coronado at PUCP. Additionally,

the lecture notes from Professor Federico Echenique (University of California,

Berkeley), and those from Professor Jonathan Levin (Stanford University) have

been crucial. Although the notation is not identical, the approach largely fol-

lows Chapter 10 of the pre-published book Linear Algebra and Optimization

for Economic Analysis by Chávez and Gallardo (2024). Finally, �Microeco-

nomic Theory� by Mas-Colell et al., along with �Existence and Optimality of

Competitive Equilibrium�, have been key foundational sources. Preliminaries

to this document can be found in F. Echenique's lecture notes or in this recap

of Consumer and Producer Theory. We start with the more basic models: 2× 2

economy and Robinson Crusoe's economy. Then, we study the 2×2 production

model. Once this is concluded, we pass to the general situation: pure exchange

economies and private ownership economies. We state both welfare theorems

(we don't prove them but we provide the references). We provide the proof of

the existence of Walrasian equilibrium in the case of functions and discuss the

issue of uniqueness. Finally, we address the topic of aggregation. I will use >

or >> for strict inequality in each entry.
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1 Economy 2× 2

We consider an economy with 2 consumers and 2 goods without the possibility

of transformation (production). Each consumer possesses initial quantities of

each good; these are (initial) endowments:

ω1 = (ω1
1 , ω

1
2)

ω2 = (ω2
1 , ω

2
2).

Exchange is voluntary and occurs when both bene�t from it. To measure when

they bene�t, we associate to the preferences of the consumers⪰i utility functions

ui(x
i
1, x

i
2), i = 1, 2. Thus, each consumer is de�ned by their pair (ui, ωi).1

Remark. A very useful graphical tool in studying this economy is the well-

known Edgeworth box. It is a rectangle □ with length ω1 = ω1
1 +ω2

1 and height

ω2 = ω1
2 + ω2

2 . The points in □ represent all possible ways of distributing the

goods. In the Edgeworth box, it is also possible to represent the indi�erence

curves of the consumers.

Figure 1: Edgeworth box.

Fore more details, see Microeconomic Theory by Mas-Colell et al. Chapter

15.

1Implicitly, unless the contrary is said, we assume that preferences are rational and con-

tinuous.
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Figure 2: Preferences in □.

The interest next is to study exchanges through themarket. In this regard,

we introduce a price vector p = (p1, p2) associated with each consumer good.

The prices set the rate of exchange for the goods: the good delivered must be

worth the same or more than the good received. In this sense, if consumer i

with initial endowment (ωi
1, ω

i
2) wishes to consume (xi

1, x
i
2), with ωi

1 ≥ xi
1 and

ωi
2 ≤ xi

2, it must be satis�ed that

p1( ωi
1 − xi

1︸ ︷︷ ︸
what is willing to give

) ≥ p2( xi
2 − ωi

2︸ ︷︷ ︸
what desires to obtain

). (1)

Rewriting 1 we get

p2
p1

≤ ωi
1 − xi

1

xi
2 − ωi

2

p1x
i
1 + p2x

i
2 ≤ p1ω

i
1 + p2ω

i
2.

The �rst equation, when equality is achieved, tells us that individual i gives up

ωi
1 − xi

1 units of good 1 in order to consume p2

p1
units of good 2. On the other

hand, the second equation is known as the budget constraint of individual i.

Given that p · ωi ∈ {xi : p · xi} for i = 1, 2, the same line de�nes the budget

constraint for each consumer in □.

Proposition 1. The budget line is orthogonal to the price vector (p1, p2).

Proof. From the perspective of i = 1, an element on the budget line is of the

form a =
(
x1
a1,

I−p1x
1
a1

p2

)
. Another element would be b =

(
x1
b1,

I−p1x
1
b1

p2

)
. Here
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I = p · ω1. Thus,

p · (a− b) =

p1
p2

 ·

 x1
a1

I−p1x
1
a1

p2

−

 x1
b1

I−p1x
1
b1

p2

 = 0.

Figure 3: Budget set.

In the market, each consumer maximizes their utility subject to the budget

constraint. That is, for i = 1, 2

Pi :


max ui(xi

1, x
i
2)

s.t. p1x
i
1 + p2x

i
2 ≤ p1ω

i
1 + p2ω

i
2

xi
1, x

i
2 ≥ 0.

Figure 4: Optimal consumption.
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De�nition 2. We say that a market is in equilibrium if all consumers obtain

what they wanted. These are the prices that balance the market: equilibrium

prices. Formally, by solving each consumer's optimization problem Pi, we

obtain their demand correspondence

xi(p) = (xi
1(p1, p2), x

i
2(p1, p2))

and their excess demand

xi(p)− ωi = (xi
1(p1, p2), x

i
2(p1, p2))− (ωi

1, ω
i
2).

The condition that de�nes equilibrium prices is that the sum of excess demands

from consumers equals zero. This is:

x1(p) + x2(p)− ω1 − ω2 = 0.

Note that these are two equations, which, broken down, are given by

x1
1(p) + x2

1(p)− ω1 = 0

x1
2(p) + x2

2(p)− ω2 = 0.

Proposition 3. Analytically, if solutions are interior and utility functions are

di�erentiable and satisfy Inada's conditions2, the consumer problem is solved

by making
Umg11
Umg12

=
p1
p2

=
Umg21
Umg22

in conjunction with

p · x1(p) = p · ω1(p)

p · x2(p) = p · ω2(p)

and

x1(p)− ω1 + x2(p)− ω2 = 0.

Proof. The conditions
Umg11
Umg12

=
p1
p2

=
Umg21
Umg22

2So corner solutions are disregarded.
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and

p · x1(p) = p · ω1(p)

p · x2(p) = p · ω2(p)

arise from the �rst order conditions of the Lagrangian function (for each i)

L (xi
1, x

i
2, λ) = Ui(x

i
1, x

i
2) + λ(p · ωi − p · xi).

Finally, x1(p)−ω1+x2(p)−ω2 = 0 is precisely the equilibrium price condition.

De�nition 4. In a consumption scenario, if no improvement can be made for

both consumers simultaneously�meaning neither consumer is strictly better o�

and at least one is strictly better than before�the allocation is referred to as a

Pareto Optimum or Pareto E�cient.

We will return to this concept in much more detail later, but for now, we

are making a very basic analysis in the case of 2x2 economies.

Proposition 5. The conditions for achieving a Pareto optimum (di�erentiable

case with monotone preferences) are:

Umg11(x
1)

Umg12(x
1)

=
Umg21(x

2)

Umg22(x
2)

(2)

x1 + x2 = ω1 + ω2. (3)

In particular, a market equilibrium is a Pareto equilibrium. Note that

condition (1) is equivalent to TMS1 = TMS2.

Proof. The �rst condition (2) is a direct consequence of solving

max Ui(x
i
1, x

i
2)

s.t. U−i(x
−i
1 , x−i

2 ) ≥ U.

Indeed, the associated Lagrangian is

L (x1
1, x

1
2, x

2
1, x

2
2, λ) = Ui(x

i
1, x

i
2) + λ(U − U−i(x

−i
1 , x−i

2 )).

The second condition follows from the monotonicity of preferences. We leave

the remaining details to the reader.
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Figure 5: Pareto set.

De�nition 6. The set of all Pareto allocations3 is known as Pareto set.

We now preview the famous welfare theorems, but for the 2 × 2 case, and

when preferences are represented by utility solutions. When we refer to trans-

fers, we mean modi�cations to the budget constraints that involve adding Ti ∈
R, where Ti > 0 represents a subsidy and Ti < 0 represents a tax. The state-

ments below are informal. We will provide the formal statements when we

address the case of pure exchange economies and with production.

Theorem 7. First Welfare Theorem. In the economy

E = {(u1, ω1), (u2, ω2)}

if the utilities of the consumers are monotone, every Walrasian Equilibrium

generates (is) a Pareto Optimum (allocation).

Theorem 8. Second Welfare Theorem. In the economy

E = {(U1, ω1), (U2, ω2)}

if the utilities of the consumers are increasing, continuous, and strictly concave,

every Pareto Optimum (allocation) corresponds to a Walrasian Equilibrium

provided that an appropriate wealth transfer has been made beforehand.

3{(x1
1, x

1
2), (x

1
2, x

2
2)}
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1.1 Exercises

1. Suppose that in a 2× 2 economy consumer i has Cobb-Douglas preferences

ui(x1i, x2i) = xα
1ix

1−α
2i . Furthermore, assume that endowments are ω1 = (1, 2)

and ω2 = (2, 1). Find Pareto optimal assignments and the (a) Walrasian equi-

librium.

2. Consider a 2× 2 economy such that

u1(x11, x21) = x11 −
1

8
x−8
21

u2(x12, x22) = −1

8
x−8
12 + x22.

Consider the endowments, ω1 = (2, r) and ω(r, 2) with r = 28/9 − 21/9 > 0.

Compute the o�er curve4 of each individual.

3. In each of the following cases, draw the Edgeworth box, some indi�erence

curves for each consumer, the Pareto set and the core (contract curve). Finally,

�nd Walrasian (competitive) equilibrium in each case.

a) u1(x11, x21) = 2x2
11x21, u2(x12, x22) = x12x

3
22, ω1 = (2, 3) and ω2 = (1, 2).

b) u1(x11, x21) = 2x11 + x21, u2(x12, x22) = x12x
3
22, ω1 = (2, 3) and ω2 =

(1, 2).

c) u1(x11, x21) = x11 + lnx21, u2(x12, x22) = x12 + 2 lnx22, ω1 = (2, 3) and

ω2 = (1, 2).

d) u1(x11, x21) = x11x21, u2(x12, x22) = min{x12, x22}, ω1 = (2, 6) and ω2 =

(4, 1).

e) u1(x11, x21) = min{2x11, x21}, u2(x12, x22) = min{x12, 2x22}, ω1 = (1, 2)

and ω2 = (3, 4).

Identify whenever it is possible the �type� (Cobb-Douglas, CES, Leontief, lin-

ear...) of the utility function.

4. Consider a 2 × 2 economy in which consumers preferences are monotonic.

Prove that

p1

(
2∑

i=1

x1i(p1, p2)− ω1

)
+ p2

(
2∑

i=1

x2i(p1, p2)− ω2

)
= 0.

4Maximization points given the budget set, which depend on (p1, p2).
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5. Consider and Edgeworth box economy in which each consumer has Cobb-

Douglas preferences

u1(x11, x21) = xα
11x

1−α
21

u2(x12, x22) = xβ
12x

1−β
22 ,

with α, β ∈ (0, 1). Consider endowments (ω1i, ω2i) > 0 for i = 1, 2. Solve for

the equilibrium price ratio and allocation.

6. Show that if both consumers in an Edgeworth box economy have continuous,

strongly monotone and strictly convex preferences, then the Pareto set has no

holes, this is, it is a connected set.

7. Under some conditions over the preferences, in a 2 × 2 economy, every

Pareto Optimal allocation can be characterized as the solution of the following

maximization problem

max u1(x1)

s. t. u2(x2) ≥ k

x1 + x2 = ω1 + ω2,

where k ∈ R. Find the conditions over the preferences.

8. There are two consumers, A and B, with the following utility functions,

uA(x
1
A, x

2
A) = a lnx1

A + (1− a) lnx2
A, ω1 = (0, 1)

uB(x
1
B , x

2
B) = minx1

B , x
2
B , ω2 = (1, 0).

Calculate the prices and quantities that clear the market.

9. Consider two individuals in a pure exchange economy whose indirect utilities

are

v1(p1, p2, y) = ln y − a ln p1 − (1− a) ln p2

v2(p1, p2, y) = ln y − b ln p1 − (1− b) ln p2

Endowments are ω1 = (1, 1) and ω2 = (1, 1). Obtain the prices that clean the

market.
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2 Robinson Crusoe Economy

In this economy, there is a single consumer, 2 goods, and there is production.

Initially, the consumer possesses an initial quantity of only one of the goods and

can produce the other good from it. The consumer certainly values both goods.

Formally, the consumer has an initial endowment: L, their preferences are

represented by a utility function u(L,C), where L is for �leisure�5 and c is

the consumption of a certain good. Finally, the technology is determined by a

function f(·) such that C = f(L). For clarity, we will use the following notation:

1. Lo for the consumption of good L.

2. Lt for the use of good L in the production of C.

3. The consumer's problem is then to divide their initial endowment L =

Lt + Lo in such a way that with C = f(Lt) his utility is maximized. In

other words, he solves 

max u(L0, C)

s.t. C = f(Lt)

Lt + L0 = L

Lt, Lo, C ≥ 0.

(4)

For interior solutions, with di�erentiable utility and production functions

umgL(L0, C)

umgC(L0, C)
= f ′(Lt)

along with C = f(Lt) and Lt + Lo = L. This formulation (4) is known as the

centralized formulation.

The solution to (4) represents the (unique) Pareto e�cient situation.

Now let's consider what happens if we introduce a market. Suppose both L

and C are traded at the prices PL = w and PC = p. On one side of the market,

we have �Robinson consumer� o�ering labor Lt, consuming Lo = L − Lt, and

demanding C. On the other side, there is Crusoe Inc., demanding Lt to produce

5The consumers can use his time to work and produce C.
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and supply C. The exchanges are made at market prices, resulting in pro�ts

for the company. Since consumer Robinson owns Crusoe Inc., these pro�ts are

incorporated into his budget constraint. In this scenario, which we will call the

market solution, �rs, the individual solves

max pC − wLt︸ ︷︷ ︸
pro�t

s. t. C = f(Lt)

Lt, C ≥ 0.

For interior solutions, when the production function is di�erentiable, the �rst-

order condition provides

f ′(Ld
t ) =

w

p
.

Then, C∗ = f(Ld
t ) and replacing in the pro�t function,

Π∗ = pf(Ld
t )− wLd

t .

In a second stage, we analyze the budget constraint of consumer Robinson

Crusoe:

pC = wLt +Π∗

pC + wLo = wL+Π∗.

Thus, he solves 

max u(Lo, C)

s. t. pC + wLo = wL+Π∗

C ≥ 0

0 ≤ Lo ≤ L.

When the utility function is di�erentiable, for interior solutions the following

�rst-order condition is obtained:

umgL(L
d
o, C

d)

umgC(Ld
o, C

d)
=

w

p

together with

pCd + wLd
o = wL+Π∗.

12



De�nition 9. Equilibrium occurs when the quantities demanded and supplied

are equal:

Ld
t = Ls

t

Cd = Cs

and with Lo = L− Ls
t .

Remark. In general, we will assume:

1. f(0) = 0, f ′ > 0, and f ′′ < 0.

2. ∂u
∂C , ∂u

∂L > 0 and ∂2u
∂C2 ,

∂2u
∂L2 < 0 and ∂2u

∂C2
∂2u
∂L2 −

(
∂2u

∂C∂L

)2
> 0.

Market Equilibrium Pareto Optimum

umgL(Lo,C)
umgC(Lo,C) =

w
p = f ′(Lt)

umgL(Lo,C)
umgC(Lo,C) = f ′(Lt)

C = f(Lt) C = f(Lt)

Lt + Lo = L Lt + Lo = L

we see that:

1. The market equilibrium is a Pareto optimum (First Welfare Theorem).

2. The Pareto optimum is a market equilibrium (Second Welfare Theorem).

2.1 Exercises

1. For each of the following cases, draw in the space �hours-product� (L,C) the

production function, hours limit, indi�erence curve, and budget set. Compute

the optimal amount of labor hours and consumption of the other good (i) by

solving the centralized problem, (ii) by means of a market structure. Compare

and comment.

a) u(ℓo, c) = ℓ2oc, c =
√
ℓt and ℓ = 10.

b) u(ℓo, c) = ℓ2oc, c = ℓt and L = 10.

c) u(ℓo, c) = ℓ2oc, c = ℓ2t and ℓ = 10.

d) u(ℓo, c) = ℓo +
√
c, c = ℓt and ℓ = 10.
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2. Prove that in an economy with one �rm, one consumer, and strictly con-

vex preferences and convex technology6, the equilibrium level of production is

unique.

3. Consider an economy with one �rm and one consumer where f(ℓt) =
√
ℓt,

u(ℓo, c) = ln c + ln ℓo and L = 1. Compute the equilibrium prices, pro�ts, and

consumptions.

6You can assume a concave production function.
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3 The 2× 2 production model

Consider an economy with J �rms. Each �rm j produces a consumer good qj

directly from a vector of L primary (i.e. nonproduced) inputs (factors) zj =

(z1j , ..., aLj) ≥ 0. Firm j′s production takes place by means of a concave,

strictly increasing an di�erentiable production function fj(zj). The economy

has total endowments of the L factor inputs (z1, ..., zL) > 0. These endowments

are initially owned by consumers and have use only as production inputs. Let

us suppose the prices of the J7 produced consumption goods are �xed p =

(p1, ..., pJ). This assumption relies on the fact that we are interested in the

factor market(s). What we wish to determine if the equilibrium factor prices

w = (w1, ..., wL). Each �rm solves

max
zj≥0

pjfj(zj)− w · zj .

The optimal j′s �rm demand is z(p, w) ⊂ RL
+. An equilibrium for the factor

markets of this economy, given the �xed output prices p, is an input price vector

w∗ = (w∗
1 , · · · , w∗

L) and a factor allocation

(z∗1 , · · · , z∗J) = ((z∗11, · · · , z∗L1), · · · , (z∗1J , · · · , z∗LJ))

such that

z∗j ∈ zj(p, w), ∀ j = 1, ..., J∑
j

z∗jℓ = zℓ, ∀ ℓ = 1, ..., L.

First order conditions provide

pj
∂fj(z

∗
j )

∂zℓj
= w∗

ℓ , ∀ j = 1, ..., J, ℓ = 1, ..., L∑
j

z∗ℓj = zℓ, ∀ ℓ = 1, ..., L.

The equilibrium output levels are then q∗j = fj(z
∗
j ) for every j. Alternatively,

FOC can be stated in terms of cost functions cj(w, qj) for j = 1, ..., J . Output

levels (q∗1 , ..., q
∗
J) > 0 and factor prices w∗ constitute (under this approach/for-

7Each �rm produces a single good.
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mulation) an equilibrium if and only if

pj =
∂cj(w

∗, q∗j )

∂qj
, j = 1, ..., J

J∑
j=1

∂cj(w
∗, q∗j )

∂wℓ
= zℓ, ∀ ℓ = 1, ..., L.

Note that the second condition can be re-stated by means of Shepard's Lema

as follows:
J∑

j=1

∂cj(w
∗, q∗j )

∂wℓ
=

J∑
j=1

z∗ℓj = zℓ.

Remark. From the central planner point of view, the welfare-maximizing prop-

erty of competitive allocations lead to

max
(z1,...,zJ )≥0

∑
j

(pjfj(zj)− w∗ · zj), s. t. :
∑
j

z∗j = z.

However, since
∑

j z
∗
j = z, then w∗ ·zj) is constant. Thus, the problem becomes

max
(z1,...,zJ )≥0

∑
j

pfj(zj), s. t. :
∑
j

z∗j = z.

Let us now be more speci�c and take J = L = 2. Hence, in this economy two

outputs are produced by means of two inputs (factor). Let us assume that the

production functions f1(z11, z21), f2(z12, z22) are homogeneous of degree one.

Usually, factor 1 is labor and factor 2 capital.

For every vector of factor prices w = (w1, w2), we denote cj(w) the mini-

mum cost of producing one unit of good j and by aj(w) = (a1j(w), a2j(w)) the

input combination (assumed unique) at which the minimum cost is reached. By

Shepard's Lema

∇cj(w) = (a1j(w), a2j(w)).
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Figure 6: 2× 2 model. From Mas-Colell et al. 1995 Chapter 15.

In Figure 6 (left side) it is observed the set

{(z1j , z2j) ∈ R2
+ : fj(z1j , z2j) = 1},

along with the cost-minimizing input combination (a1j(w), a2j(w)). On the

right side, we can observe a level set of the unit cost function

{(w1, w2) : cj(w1, w2) = c}.

This curve is downward slopping since as w1 increases, w2 must fall in order to

keep the minimized cost of producing one unit of good j unchanged. Further-

more, the set

{(w1, w2) : cj(w1, w2) ≥ c}

is convex because of the concavity of the cost function cj(w). Finally, note that

as we move along the curve toward higher w1 and lower w2,

a1j(w)

a2j(w)

falls (why? what about the vector ∇cj(w)?).

1. Situate yourself in the Edgeworth box 2× 2 for the factors z1, z2. Convince

yourself that, when a Pareto Optimal allocation lies in the diagonal, then the

Pareto set is precisely the diagonal. Hint: fi is homogeneous of degree one, i.e.,

constant returns to scale.
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De�nition 10. The production of good 1 is relativelty more intensive in factor

1 than is the production of good 2 if

a11(w)

a21(w)
>

a12(w)

a22(w)

at all factor prices w = (w1, w2).

Theorem 11. Stopler-Samuelson. In the 2 × 2 production model with the

factor intensity assumption, if pj increases, then the equilibrium price of the

factor more intensively used in the production of good j increases while the

price of the other actor decreases (assuming interior equilibrium both before

and after the price change).

2. Prove Stopler-Samuelson theorem. For this, use the fact that

c1(w1, w2) = p1

c2(w1, w2) = p2.

Di�erentiating, you should obtain the system

dp =

a11(w∗) a21(w
∗)

a12(w
∗) a22(w

∗)


︸ ︷︷ ︸

=A

dw.

Factor intensity assumption implies that |A| > 0. Finally, take dp = (1, 0) to

conclude that dw1 > 0 and dw2 < 0.

Since p1 ↑ implies w∗
1/w

∗
2 ↑, �rms move to a less intensive use of factor 1. See

Figure 7.

Figure 7: Stopler-Samuelson theorem.
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Theorem 12. Rybcszynsky. In the 2× 2 production model with the factor

intensity assumption, if the endowment of a factor increases, then the production

of the good that uses this factor relatively more intensively increases and the

production of the other good decreases (assuming interior equilibria both before

and after the change of endowment).
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4 Pure Exchange Economy

We will start by addressing the basic pure exchange model:

1. A �nite number of goods ℓ = 1, ..., L and consumers i = 1, ..., I.

2. Pure exchange (without production, �rms).

3. Goods are bought and sold at prices p ∈ RL
+, which are uniform and �xed

from the perspective of all consumers. Almost in every scenario, p ∈ RL
++.

When pℓ = 0 for a certain good, no one desires it.

4. Each consumer i has an endowment ωi ∈ RL
+ and their preferences ⪰i

will be represented by a utility function ui : RL
+ → R. Moreover, ω =∑I

i=1 ω
i >> 0 is the economy (total) endowment.

5. The objective of the consumer is to choose the best element (maximal)

according to their preferences within their budget set

B(p, ωi) =

x ∈ RL
+ :

L∑
ℓ=1

pℓxℓ ≤
L∑

j=1

pℓω
i
ℓ

 .

6. E = {⪰i, ω
i}i=1,...,I (when possible we replace ⪰i by ui) is a pure exchange

economy. Each consumer solves maxx∈B(p,ωi) u
i(x).

7. The set B(p, ωi) is convex and compact for p ∈ RL
++. It is closed be-

cause B(p, ωi) = f−1
p (−∞, p · ωi] with fp(x) = p · x. It is bounded since

B(p, ωi) ⊂ B||·||∞

(
0, 2p·ωi

pmin

)
. Hence, the budget set is compact, as claimed.

Therefore, if the utility function (ui) is continuous, the consumer's prob-

lem always has a solution (by the Weierstrass theorem). Moreover, if

ui is strictly quasi-concave, the solution is unique (see Mas-Colell et al.,

Chapter 3).

8. We de�ne the demand function (correspondence to be formal, but we will

mainly assume that it is a function) of each consumer i, as

xi : RL
++ → RL

+

p → xi(p) = argmaxx∈B(p,ωi)u(x).
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4.1 E�ciency

In general terms, we have the following situation: i = 1, ..., I consumers who

can consume ℓ = 1, ..., L goods. They "are born" with endowments ωi and

can trade, according to the exchange rates dictated by the price vector p, to

obtain new consumption bundles xi. A set of bundles {x1, ..., xI} is known as

an allocation, and we will now present a series of de�nitions and establish some

key results to address the topic of e�ciency in this context. For now, we assume

there is no production.

De�nition 13. Feasible Allocation. Given an economy E = {(ωi,⪰i) :

i = 1, ..., I}, a feasible allocation is a vector (x1, ..., xI) ∈ RL×I
+ such that∑I

i=1 x
i ≤

∑I
i=1 ω

i.

Some times, we make the distinction between allocations ≤8 and allocations =9.

De�nition 14. Pareto Optimality. An allocation (xi)Ii=1 is Pareto optimal

in E if it is ≤ and there is no allocation ≤ (yi)Ii=1 such that yi ⪰i x
i for every

i = 1, . . . , I, and yh ≻h xh for some h ∈ {1, . . . , I}.

Sometime, the following de�nition is used.

De�nition 15. Strong Pareto Optimality. A feasible allocation (x1, ..., xI) ∈
RL×I

+ is a strong Pareto optimum if there does not exist (x1, ..., xI) ∈ RL×I
+

such that

1. ui(xi) ≥ ui(xi) for i = 1, ..., I.

2. uj(xj) > uj(xj) for some j ∈ {1, ..., I}.

De�nition 16. Weak Pareto Optimality. A feasible allocation (x1, ..., xI) ∈
RL×I

+ is a weak Pareto optimum if there does not exist (x1, ..., xI) ∈ RL×I
+

such that ui(xi) > ui(xi) for i = 1, ..., I.

De�nition 17. Walrasian Equilibrium. A Walrasian equilibrium in E is a

pair (x, p): x = (xi)Ii=1 ∈ RL×I
+ , and p ∈ RL

+ (a price vector), such that:

8
∑I

i=1 x
i ≤

∑I
i=1 ω

i.
9
∑I

i=1 x
i =

∑I
i=1 ω

i.
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1. For every i = 1, . . . , I, xi ∈ B(p, p·ωi), and if yi ∈ B(p, p·ωi) then xi ⪰i y
i

(all consumers optimize when choosing xi at prices p);

2.
∑I

i=1 x
i =

∑I
i=1 ω

i (demand equals supply).

A characterization of Pareto optimal allocations. Let E = (⪰i, ω
i) be an

exchange economy in which each preference ⪰i is represented by a utility ui.

Consider the maximization problem P (u):

(PO) :


maxx∈RL×I

+
u1(x1)

s.t. ui(xi) ≥ ui ∀i = 2, 3, . . . , I,∑I
i=1 xi ≤ ω,

where u ∈ RI is a vector of utility values.

Proposition 18. Let each ⪰i be continuous and strictly monotone. Then, an

allocation is a Pareto optimum i� there is u ∈ RI for which x solves P (u).

Theorem 19. First Welfare Theorem. In a pure exchange economy, if

preferences10 ⪰i are locally non satiated, then every Walrasian equilibrium is

Pareto e�cient.11

Proof. See Chávez and Gallardo (2024) Chapter 10. You can prove it (it is not

so hard).

De�nition 20. Walrasian Equilibrium with Transfers. A Walrasian equi-

librium with transfers is a tuple (x, p, T ), where (x) ∈ RL×I
+ , p ∈ RL

+ (a price

vector), and T = (Ti)
I
i=1 ∈ RI (a vector of net transfers), such that:

1. For every i = 1, . . . , I, xi ∈ B(p,Mi), and if zi ∈ B(p,Mi) then xi ⪰ zi,

where Mi = p ·ωi+Ti (consumers optimize by choosing xi in their budget

sets);

2.
∑I

i=1 x
i =

∑I
i=1 ω

i (demand equals supply);

3.
∑I

i=1 Ti = 0 (net transfers are �budget balanced�).

10We always assume that these are rational. Actually, some texts such as Echenique's lecture

notes, start de�ning preferences as a complete and transitive binary relation.
11The allocation of the Walrasian equilibrium is Pareto optimum.
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Theorem 21. Second Welfare Theorem. In a pure exchange economy, if

preferences are strongly monotone, convex and continuous12 and x∗ is a Pareto

optimum such that x∗ >> 013, then, there exists p ∈ RL
++ and T ∈ RI ,

∑
i Ti =

0, such that (x∗, p∗, T ) is a Walrasian equilibrium with transfers.

Proof. To prove this theorem, the separating hyperplane theorem is fundamen-

tal. You can �nd a proof in Chávez and Gallardo (2024) Chapter 10 or Federico

Echenique's lecture notes. The proof is not as easy as the one for the First

Welfare Theorem.

De�nition 22. Coalition. A coalition is any non-empty subset of I.

De�nition 23. Blocking. A coalition S ⊂ I blocks a feasible allocation

(xi)i=1,...,I ∈ RLI
+ if there exists an allocation (x̂i)i∈S ∈ RL×S

+ such that

1. For all i ∈ S: x̂i ≻i x
i.

2.
∑

i∈S x̂i ≤
∑

i∈S ωi.

De�nition 24. The core of an economyN (E) is the set of all feasible allocations
that are not blocked by any coalition.

If W(E) is the set of all Walrasian equilibrium allocations, P(E) the set

of Pareto optimum allocations, then when preferences are continuous, strictly

convex, and strictly (strong) monotone W(E) ⊂ N (E) ⊂ P(E).

4.2 Excess of demand and existence of the Walrasian

equilibrium

De�nition 25. The excess demand function14 of consumer i is

zi(p) = xi(p, p · ωi)− ωi,

where xi(p, p · ωi) is consumer's i Walrasian demand function. The (aggregate)

excess demand function of the economy is

z(p) =
∑
i

zi(p).

12See Chávez and Gallardo (2024) for the de�nition.
13Note that it is implicitly required that ω >> 0, why?
14Formally, we should speak about correspondences. The generalization is not so hard but
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Proposition 26. If (⪰i, ωi)
I
i=1 is an exchange economy in which ω =

∑I
i=1 ωi >

0 and each ⪰i is continuous, strictly convex and strictly monotone, then the

aggregate excess demand function satis�es:

1. z is continuous.

2. z is homogeneous of degree zero.

3. Walras Law: ∀ p ∈ RL
++: p · z(p) = 0.

4. Bounded below: ∃ M > 0 such that ∀ ℓ, p ∈ RL
++, zℓ(p) > −M .

5. Boundary condition: if {pn} is a sequence in RL
++ and p = limn p

n where

p ∈ RL
0 \RL

++ and p ̸= 0, then there is ℓ ∈ {1, ..., L} such that {zℓ(pn)}n is

unbounded.

Theorem 27. Let X be a non empty convex and compact subset of Rn and

f : X → X a continuous function. Then, there exists x∗ ∈ X such that

f(x∗) = x∗.

Theorem 28. Existence of Walrasian equilibrium. In the context of

Proposition 26, for z : RL
+ → RL, there exists p∗ ∈ RL

+ such that z(p∗) ≤ 0.

Furthermore, if z : RL
++ → RL, there exists p∗ such that z(p∗) = 0.

Proof. First, since z is homogeneous of degree zero, we can restrict p to the ∆

(also known as n−dimensional simplex), de�ned as follows:

∆ =

{
p ∈ RL

+ :

L∑
ℓ=1

pℓ = 1

}
.

This set is clearly convex and compact. Indeed, given p1, p2 ∈ ∆ and θ ∈ [0, 1],

p3 = θp1 + (1− θ)p2 ∈ ∆ :

L∑
ℓ=1

p3ℓ =

L∑
ℓ=1

θp1ℓ + (1− θ)p2ℓ

= θ

L∑
ℓ=1

p1ℓ + (1− θ)

L∑
ℓ=1

p2ℓ

= θ + (1− θ) = 1.

24



With respect to the compactness, ∆ is closed since it is the intersection of

the orthant RL
+ and the hyperplane H ((1, ..., 1), 1). It is bounded since ∆ ⊂

[0, 1]L. Hence, since all of this occurs in RL, ∆ is a compact set. It is therefore

possible to apply Brouwer �xed point over ∆. We would only need to prove

that z(p) + p maps ∆ onto ∆. However, this is not the case in general. This is

where the following trick is employed, which allows us to conclude the matter

using Brouwer's Fixed Point Theorem. Let us de�ne Ψ : ∆ → RL de�ned as

follows:

Ψℓ =
pℓ +max{0, zℓ(p)}

1 +
∑L

ℓ=1 max{0, zℓ(p)}
, ∀ ℓ = 1, ..., L.

Since
∑L

ℓ=1 pℓ = 1,

L∑
ℓ=1

Ψℓ =

L∑
ℓ=1

{
pℓ +max{0, zℓ(p)}

1 +
∑L

ℓ=1 max{0, zℓ(p)}

}
= 1,

i.e., Ψ(∆) ⊂ ∆. Hence, by Theorem 27, there exists p∗ such that Ψ(p∗) = p∗.

This yields to: ∀ ℓ = 1, ..., L

p∗ℓ =
p∗ℓ +max{0, zℓ(p∗)}

1 +
∑L

ℓ=1 max{0, zℓ(p∗)}

p∗ℓ

(
1 +

L∑
ℓ=1

max{0, zℓ(p∗)}

)
= p∗ℓ +max{0, zℓ(p∗)}

p∗ℓ

L∑
ℓ=1

max{0, zℓ(p∗)} = max{0, zℓ(p∗)}

zℓ(p
∗)p∗ℓ

L∑
ℓ=1

max{0, zℓ(p∗)} = zℓ(p
∗)max{0, zℓ(p∗)}

L∑
ℓ=1

zℓ(p
∗)p∗ℓ︸ ︷︷ ︸

=0

[
L∑

ℓ=1

max{0, zℓ(p∗)}

]
=

L∑
ℓ=1

zℓ(p
∗)max{0, zℓ(p∗)}

Therefore,
L∑

ℓ=1

zℓ(p
∗)max{0, zℓ(p∗)} = 0. (5)

for simplicity, we work only with functions, unless the contrary is said.
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Equation 5 points out that zℓ(p
∗) ≤ 0, ∀ ℓ = 1, ..., L. Finally, once again by

Walras Law, since we must have

L∑
ℓ=1

p∗ℓzℓ(p
∗) = 0 (6)

with pℓ ≥ 0, combining (6) with Equation 5, we must have pℓzℓ(p
∗) = 0 for

all ℓ = 1, ..., L. Finally, for pℓ > 0, necessarily zℓ(p
∗) = 0 for all ℓ = 1, ..., L,

which concludes the proof. Note that we are using the strict convexity of the

preferences to ensure that z is a function.

Some comments on the existence theorem of Walrasian equilibrium:

1. The argument is essentially topological as it makes use of Brouwer's the-

orem.

2. If we wanted to work with correspondences, it is imperative to use Kaku-

tani's Theorem, which is a generalization of Brouwer's theorem.

3. For more details on the matter, see Echenique's lecture notes.

4. For our proof, which only uses Brouwer's �xed point theorem, we have fol-

lowed Varian (Microeconomic Analysis) and Ellickson (Competitive Equi-

librium Theory and Applications).

5. The theory of General Equilibrium (at least the one presented in these

lecture notes, avoiding the di�erential approach or/and in�nite goods)

was developed by Kenneth Arrow, Gérard Debreu, and Lionel McKenzie.

4.3 Exercises

1. [Adapted from Aliprantis et al.] Consider an economy with 3 consumers and

2 goods. Utilities and endowments are given by

u1(x11, x21) = x
1/2
11 + x

1/2
21 , (ω11, ω21) = (1, 2)

u2(x12, x22) = min{x12, x22}, (ω12, ω22) = (3, 4)

u3(x13, x23) = x23e
x13 , (ω13, ω23) = (1, 1).
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Prove that the optimal demands are given by

x11 =
p2p1 + 2p22
p21 + p2p1

, x21 =
p21 + 2p2p1
p2p1 + p22

x12 = x22 =
3p1 + 4p2
p1 + p+ 2

x13 =
p2
p1

, x23 =
p1
p2

.

2. Find the optimal demands in a pure exchange economy with L consump-

tion goods, N consumers, where each consumer k = 1, ..., N has preferences

represented by

uk(xk) =

L∏
ℓ=1

xαℓk

ℓk ,

∑L
ℓ=1 αℓk = 1, αℓk ∈ (0, 1), and endowments ωk > 0. Do not seek to �nd the

Walrasian equilibrium.

3. Consider an economy with N consumers, two goods, and preferences given

by

ui(x1i, x2i) = x2
1i + x2

2i.

Endowments are ωi = (1, 1). If N is even, �nd, if it exists, a Walrasian equilib-

rium. What if N is odd?

4. Consider a pure exchange economy where all consumers have the same pref-

erences. Under what (minimal) conditions over the preferences, an allocation

where every single individual consumes the same bundle is Pareto e�cient?

5. Prove Proposition 26. You will need Berge theorem.

6. Let z(p1, p2) =
(

Bp2

p1
, Ap1

p2

)
− (A,B). Prove that z satis�es the �ve properties

of an excess demand function.

7. Consider a 2×2 economy where the �rst consumer has preferences represented

by a Cobb-Douglas utility function

u1(x11, x21) = x11x21

and initial endowment ω1 = (2, 6). The second consumer has preferences

u2(x12, x22) = min{x12, x22}

and initial endowment ω2 = (4, 1). Let p = (p1, p2) ∈ R2
++.
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a) Find the demand (correspondence) of each consumer.

b) Find the excess demand (correspondence) of each consumer.

c) Verify if z satis�es the usual properties of excess demand functions.

d) ¾Is there an equilibrium in this economy?

e) Find the Pareto optimal allocations.

8. There is an alternative approach to characterizing Pareto e�cient allocations

that is sometimes useful. In this approach, one considers maximizing a linear

(Bergson-Samuelson) social welfare function of the form
∑

i αiui subject to a

resource constraint. The program is:

max
x1,...,xI

∑
i

αiui(xi1, . . . , xiL)

subject to ∑
i

xi ≤
∑
i

ωi.

Prove this equivalence. Hint: apply FOC to the PO problem.
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5 Economies with production

1. Economic agents are capable of transforming bundles of goods.

2. Each �rm j = 1, ..., J is de�ned by its possibilities of transforming bundles,

which we will call technology. These are denoted Yj .

3. They maximize their pro�t.

4. yD is the bundle of goods used as input and yO is the bundle of goods

produced by the �rm.

5. If y is a production plan, yD = −min{y, 0}. On the other hand, the

supply is yO = max{y, 0}.

y = yO − yD = max{y, 0}+min{y, 0}.

6. If yℓ < 0, good ℓ is used as input, in the amount |yℓ| = −yℓ.

Note. From now, we will assume that technologies are non empty closed sets.

Remark. Sometimes we can write Y by means of a function F : RL → R

Y = {y ∈ RL : F (y) ≤ 0}.

When there is a single product,

Y = {(y,−x) ∈ RL : y ≤ f(x), y, x ≥ 0}.

De�nition 29. A technology Y ⊂ RL exhibits

1. Possibility of inactivity: 0 ∈ Y .

2. Possibility of free disposal: if y ∈ Y and y′ ≤ y (in each component), then

y′ ∈ Y .

3. No free lunch: if y ∈ Y with y ≥ 0, then y = 0.

4. Strictly bounded: if there exists K ∈ R such that every y ∈ Y satis�es

yℓ ≤ K.
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De�nition 30. A technology Y ⊂ RL is convex if it is a convex set. Moreover,

it is strictly convex if ∀ y1, y2 ∈ Y and α ∈ (0, 1):

αy1 + (1− α)y2 ∈ Y ◦.

Given the prices p >> 0, the pro�t from the plan y is

py = pmax{y, 0}+ pmin{y, 0}

= pmax{y, 0} − p(−min{y, 0})

= pyO − pyD

= Iy − Cy

where Iy is the revenue from sales and Cy is the cost. The objective of the �rm

is to solve

max py

s.t. y ∈ Y.

Theorem 31. If the set Y is compact and strictly convex, then the problem

has a solution, which is unique ŷ ∈ Y and such that pŷ ≥ py, ∀ y ∈ Y.

The theorem ensures the well-de�ned nature of π(p) = maxy∈Y {py} and of the

supply function y(p) = Argmax py s.t. y ∈ Y . Note that π(p) = py(p).

Theorem 32. Given a technology Y that is non-empty, strictly convex, closed,

and bounded above, the supply satis�es:

1. It is continuous.

2. It is homogeneous of degree zero.

3. It is bounded above.

On the other hand, the pro�t function is

1. Continuous.

2. Homogeneous of degree one.

3. Convex.

Proof. The proof requires Theorem ?? for all the results related to continuity.

The other properties are straightforward to derive.
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5.1 Private ownership economies

There are L goods, I consumers, and J �rms:

1. Each �rm j has a technology Yj .

2. Each consumer i has an initial endowment ωi, a preference ⪰i over the

consumption space, and shares in the pro�ts of each �rm, stacked in the

vector θi: θi = (θi1, ..., θiJ), 0 ≤ θij ≤ 1 and
∑I

i=1 θij = 1.

Then, a private ownership economy is the collection (or tuple)

E = {(ωi,⪰i)i=1,...,I , (Yj)j=1,...,J , (θij)i=1,...,I,j=1,...,J}.

We assume that, for ω =
∑I

i=1 ωi and Y =
∑J

j=1 Y
j , there exists y′ ∈ Y such

that

ω + y′ >> 0.

In other words, there exists a production plan such that, starting from the initial

endowment, we can obtain positive quantities of all goods. Viewed another way,

if there are no units of a good, it can be produced in some quantity without

depleting another of the economy's initial goods.

In an economy with production E , each �rm j, by solving its pro�t maximization

problem

max py

s.t. y ∈ Y j

generates a supply yj(p) and pro�ts πj(p) = pyj(p). In turn, each consumer i

solves

max ui(x)

s.t. px ≤ pωi +

J∑
j=1

θijpy
j(p)

x ≥ 0

and generates a demand xi(p).
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Note. From now on, we assume that

1. ⪰i are rational, continuous, strictly convex, and strongly monotonic.

2. Y j are closed, bounded above, strictly convex, and with 0 ∈ Y j .

Theorem 33. For every p ∈ RL
++, there exists a unique x

i(p) ∈ RL
+ solution to

the problem of the economy E , which satis�es:

1. ∀ α > 0 : xi(αp) = xi(p) - homogeneous of degree zero.

2. pxi(p) = pωi +
∑J

j=1 θijpyj(p) - Walras' law.

3. xi : RL
++ → RL

+ is continuous.

Theorem 34. For any sequence (of vector prices) that converges to a point on

the boundary of RL
++, that is, p

n → p, where p is non-zero but there exists an

ℓ such that pℓ = 0, either

max
ℓ

xi
ℓ(p

n) → ∞, for some i = 1, ..., I

or

min
ℓ

yjℓ (p
n) → −∞, for some j = 1, ..., J.

De�nition 35. In a production economy, the excess demand function is

z(p) =

I∑
i=1

xi(p)−
J∑

j=1

yj(p)−
I∑

i=1

ωi.

De�nition 36. For an economy E with an aggregate excess demand function

z : RL
++ → RL, we say that p∗ is an equilibrium price if z(p∗) = 0.

Theorem 37. In the case of an economy with production, the properties of the

excess demand function from a pure exchange economy still hold.

De�nition 38. Given an economy with production

E = {(ωi,⪰i)i=1,...,I , (Yj)j=1,...,J , (θij)i=1,...,I,j=1,...,J}

a feasible allocation is a vector (x1, ..., xI , y1, ..., yJ) ∈ RIL
+ × RJL such that

I∑
i=1

xi ≤
I∑

i=1

ωi −
J∑

j=1

yj .

32



De�nition 39. An allocation (x, y) ∈ RIL
+ × RJL is an equilibrium if there

exists p ∈ RL
++ such that:

1. For all j = 1, ..., J : pyj ≥ py′ for all y′ ∈ Y j : �rms maximize.

2. For all i = 1, ..., I: pxi ≤ pωi +
∑J

j=1 θijpy
j : feasibility of the allocations.

3. For all i = 1, ..., I: ui(x) > ui(xi) implies px > pωi +
∑J

j=1 θijpy
j : con-

sumers maximize.

De�nition 40. Pareto Optimality. An allocation (x, y) in E is Pareto opti-

mal15 if there is no allocation (x̃, ỹ) such that x̃i ⪰i xi for every i = 1, . . . , I,

and x̃h ≻h xh for some h ∈ {1, . . . , I}.

De�nition 41. Weak Pareto Optimality. An allocation (x, y) is a weak

Pareto optimum if

1. It is feasible.

2. ∄(x̃, ỹ) feasible such that ∀ i = 1, ..., I, x̃i ⪰ xi and for at least one

h ∈ {1, ..., I}, x̃h ≻ xh.

Theorem 42. First Welfare Theorem in a POE. Assume that in a POE

consumers' preferences are locally nonsatiated. Then, every equilibrium alloca-

tion is a strong Pareto optimum.

De�nition 43. Walrasian Equilibrium. Let E be a private ownership econ-

omy. A Walrasian Equilibrium is a pair (x, y) ∈ RIL
+ × RJL

+ , together with a

price vector p ∈ RL
+ such that:

1. For every i = 1, ..., I, xi ∈ B(p,Mi), and x′
i ∈ B(p,Mi) ⇒ xi ⪰ x′

i, where

Mi = p · ωi +
∑J

j=1 θijp · yj (consumers optimize by choosing xi in their

budget sets);

2. For every j = 1, ..., J , yj ∈ Yj , and p · yj ≥ p · y′j ∀ y′j ∈ Yj (�rms optimize

pro�ts by choosing yj in Yj);

3.
∑I

i=1 xi =
∑I

i=1 ωi +
∑J

j=1 yj (demand equals supply).

15Also referred as strong Pareto allocation or Pareto optimum.

33



There is a simple and useful characterization of Pareto optimal allocations. Let

((Yj)
J
j=1, (⪰i, ωi, θi)

I
i=1) be a private ownership economy in which each prefer-

ence relation ⪰i has a continuous and strictly monotone utility representation

ui : RL
+ → R. Consider the following optimization problem:

max
(x,y)∈RIL

+ ×RJL
+

u1(x1) (PO)

subject to

ui(xi) ≥ ui ∀ i = 2, 3, . . . , I,

I∑
i=1

xi ≤ ω +

J∑
j=1

yj ,

yj ∈ Yj ∀j = 1, . . . , J.

Proposition 44. Suppose that each preference ⪰i is continuous and strictly

monotone. An assignment (x, y) solves the maximization problem (PO) if and

only if it is Pareto Optimal.

De�nition 45. Walrasian Equilibrium with Transfers. A Walrasian equi-

librium with transfers is a tuple (x, y, p, T ), where (x, y) ∈ RIL
+ × RJL

+ , p ∈ RL
+

(a price vector), and T = (Ti)
I
i=1 ∈ RI (a vector of net transfers), such that:

1. For every i = 1, . . . , I, xi ∈ B(p,Mi), and x′
i ∈ B(p,Mi) ⇒ xi ⪰ x′

i, where

Mi = p · ωi +
∑J

j=1 θijp · yj + Ti (consumers optimize by choosing xi in

their budget sets);

2. For every j = 1, . . . , J , yj ∈ Yj , and p ·yj ≥ p ·y′j ∀ y′j ∈ Yj (�rms optimize

pro�ts by choosing yj in Yj);

3.
∑I

i=1 xi =
∑I

i=1 ωi +
∑J

j=1 yj (demand equals supply);

4.
∑I

i=1 Ti = 0 (net transfers are �budget balanced�).

Theorem 46. Second Welfare Theorem in a POE. Let

E = (⪰i, ωi, θi)
I
i=1, (Yj)

J
j=1

be a P.O.E. in which each Yj is closed and convex, and each preference ⪰i

is strongly monotone, convex, and continuous. If (x∗, y∗) is a Pareto optimal
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allocation in which
∑I

i=1 x
∗
i ≥ 0, then there is a price vector p∗ ∈ RL

+ and

transfers T = (Ti)
I
i=1 such that (x∗, y∗, p∗, T ) is a Walrasian equilibrium with

transfers.

The proof of the welfare theorems in the context of a P.O.E. is analogous to

that of pure exchange economies. You are encouraged to prove them.

5.2 Exercises

1. Prove Theorems 33 and 34. You are encouraged to interpret them as well.

2. Study the properties of the technology

Y =

{
(x, y) ∈ R2 : x < 1, y ≤ x

x− 1

}
.

In particular: closeness, convexity and free disposal.

3. Consider a �rm with technology Y = {(−x, z) ∈ R2 : x ≥ 0, z ≤ f(x)}.
Prove that if Y possess the free disposal property, then f is non decreasing.

4. Consider an economy with two goods, two consumers and one �rm. Con-

sumer 1 has preferences represented by

u1(x11, x21) =
√
x11x21,

with initial endowment ω1 = (1, 0) and θ1 = 0.3. Consumer 2 has quasilinear

preferences

u2(x12, x22) = x12 + ln(x22),

with initial endowment ω2 = (2, 0) and θ2 = 0.7. On the other hand, the �rms

technology is

Y =

{
(x, y) ∈ R2 : x ≤ 0, y ≤ Ax

x− 1

}
where A > 0 is a productivity factor.

1. Find the o�er function of the �rm.

2. Find each consumers correspondence demand.

3. Find the excess demand correspondence of the economy z(p1, p2).
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4. Study the e�ect of the productivity factor A over the equilibrium (prices

and allocation). In other terms, do some comparative statics focusing on

the parameter A.

5. Consider and economy with two consumers:

uA(xA1, xA2) = min
{
xA1,

xA2

4

}
, ωA = (a, 1), θA = 1/3

uB(xB1, xB2) = (xB1)
1/3(xB2)

2/3, ωB = (1, b), θB = 2/3,

with a, b > 0. Let

Y = {(x1, x2) : 4x2 + x1 ≤ 0, 4x1 + x2 ≤ 0}

be the �rms technology.

a) Set the �rm problem and solve it; specify all the price vector p ∈ Λ for

which the problem has a solution. Obtain the o�er and pro�t correspon-

dences.

b) Consider a speci�c p ∈ Λ. Set and solve the consumers problem (for each

one).

c) Obtain the excess demand function and analyze if it satis�es the basic

properties16.

6. Consider an economy with two goods, two consumers and a �rm. Consumers

have quasilinear utilities:

u1(m1, x1) = m1 + 4 lnx1

u2(m2, x2) = m2 + lnx2.

Initial endowments are ω1 = (100, 0) and ω2 = (100, 0). Each one owns a

fraction θi of a �rm whose technology is given by

Y = {(−me, xe) : xe =
√
me, xe ≥ 0,me ≥ 0}.

We take xi ≥ 0 but mi ∈ R. This is, consumers can consume a negative amount

of m. Let pm be the price of good m and px the price of good x.

16They are analogous to the Pure Exchange Economies case. See Mas-Colell et all (1995)
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1. Find the �rm's o�er.

2. Find each consumers demand.

3. Find the aggregated excess demand function.

4. There is a property which is not satis�ed17, which one? Why?

5. Can you normalize pm = 1? Justify.

6. Prove that, in this economy, the equilibrium prices do not depend on the

initial wealth18 distribution.

for a more detailed discussion.
17From the properties that aggregated demand function satisfy.
18Endowments and shares.
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6 Uniqueness of the Walrasian equilibrium

The issue of the existence of Walrasian equilibrium has already been discussed

previously. In this section, we will discuss the question of uniqueness.

Example 47. Consider 2 individuals with preferences

u1(x1, x2) = x1 −
1

8
x−8
2

u2(x1, x2) = x2 −
1

8
x−8
1

with endowments ω1 = (2, r) and ω2 = (r, 2), r > 0. These utilities represent

rational, continuous, convex, and strictly monotonic preferences. Normalizing

p2 = 1,

z(p1) =
r

p1
− 1

p
8/9
1

+
1

p
1/9
1

− r.

We quickly note that z1(1, 1) = 0. However, for r = 28/9−21/9, we �nd another

equilibrium. We also note that if (p∗, 1) is an equilibrium, (1/p∗, 1) is also an

equilibrium. Thus, we do not have guaranteed uniqueness.

Theorem 48. Sonnenschein-Mantel-Debreu. Given Z that satis�es Propo-

sition 26, there exists an economy E that generates it as its aggregate demand

function.

The proof of Sonnenschein-Mantel-Debreu is not trivial at all.

Remark. While more restrictions must be imposed on the economy to ensure

the uniqueness of an equilibrium, every economy has a �nite and odd number

of isolated equilibria.

Let us normalize pL = 1 and de�ne

ẑ(p) = (z1(p), z2(p), . . . , zL−1(p)).

Also, let D̂(p) = D(p1, . . . , pL−1)ẑ(p).

De�nition 49. An equilibrium p∗ is regular if the matrix D̂(p∗) is regular, i.e.,

it has a non-zero determinant. An economy is regular if all its equilibriums are

regular. An economy that is not regular is called critical.
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Remark. Regular economies are dense.

De�nition 50. Local Uniqueness. An equilibrium p∗ ∈ P(ω⃗) is locally

unique if there exists ϵ > 0 such that, ∀p ∈ RL−1
++ ,

∥p− p∗∥ < ϵ =⇒ p /∈ P(ω⃗),

where P(ω⃗) is the set of equilibrium prices.

Proposition 51. Let ẑ be C1 and p∗ ∈ P(ω⃗) be a regular equilibrium. Then,

p∗ is locally unique. Furthermore, there are neighborhoods B1 of ω⃗ in E , and
B2 of p∗ in RL−1

++ , and a function h : B1 → B2 such that

ẑ(h(ω⃗), ω⃗) = 0 ∀ ω⃗ ∈ B1,

and

Dω⃗h(ω⃗) = −

[
Dpẑ(p, ω⃗)

∣∣∣∣
p=p∗

]−1

·Dω⃗ ẑ(p
∗, ω⃗).

De�nition 52. Index. The index of p ∈ P(ω⃗) is de�ned as:

index(p) = (−1)L−1 · sign (det (Dpẑ(p, ω⃗))) ,

where det (Dpẑ(p, ω⃗)) is the determinant of the matrix Dpẑ(p, ω⃗).

Note that for every regular economy ω⃗, index(p) ∈ {−1, 1} ∀ p ∈ P(ω⃗).

We state without proof the following theorem.

Theorem 53. Index Theorem. If ω⃗ is a regular economy, then∑
p∈P(ω⃗)

index(p) = 1.

The index theorem can be used to establish uniqueness: if you can show that

any competitive equilibrium in an economy has index one, then there can only

be one equilibrium. Finally, the index theorem implies the following curiosity.

Corolario 54. A regular economy has an odd number of equilibria.

De�nition 55. Given an excess demand function (EDF) z, we say that it

satis�es the Weak Axiom of Revealed Preferences (WARP) if for any pair of

prices p, p′ such that z(p) ̸= z(p′), if pz(p′) ≤ 0, then p′z(p) > 0.
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De�nition 56. An EDF z satis�es the property of Gross Substitutes if for any

pair of prices p and p′ such that p′ = p+ εeℓ (ε > 0),

zk(p) > zk(p
′), k ̸= ℓ.

Theorem 57. If, in a regular economy, an EDF z satis�es the Gross Substitutes

property and conditions from Proposition 26, it has a unique equilibrium.
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7 The core

Let E = {ωi,⪯i: i = 1, ..., I} be a pure exchange economy. Following Federico

Echenique's notation:

� An allocation ≤ in E is a vector x = (xi)
I
i=1 ∈ RIL

+ , such that
∑I

i=1 xi ≤∑I
i=1 ωi = ω.

� An allocation = in E is a vector x = (xi)
I
i=1 ∈ RIL

+ , such that
∑I

i=1 xi =∑I
i=1 ωi = ω.

� A nonempty subset S ⊆ {1, . . . , I} of agents is called a coalition.

� Let S be a coalition. A vector (yi)i∈S is an S-allocation ≤ if
∑

i∈S yi ≤∑
i∈S ωi.

� Let S be a coalition. A vector (yi)i∈S is an S-allocation = if
∑

i∈S yi =∑
i∈S ωi.

De�nition 58. We say that

� A coalition S blocks the allocation≤ x in E if there exists an S-allocation≤
(yi)i∈S such that yi > xi for all i ∈ S.

� An allocation≤ is weakly Pareto optimal if it is not blocked by the coalition

I of all consumers.

� It is individually rational if no coalition consisting of a single consumer

blocks it.

� It is a core allocation if there is no coalition that blocks it.

Let C(E) be the set of core allocations≤ of E . We refer to C(E) as the core
of the economy E . Let P(E) be the set of Pareto Optimal allocations≤ of the

economy E , and let W(E) be the set of Walrasian Equilibrium allocations≤.
Note that C(E), W(E), and P(E) are subsets of RIL

+ .

De�nition 59. A coalition S weakly blocks the allocation x if there exists an

S-allocation≤ (yi)i∈S such that yi ≥ xi for all i ∈ S, and yj > xj for some

j ∈ S.
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1. Prove that, if each ⪰i is continuous and strictly monotonic, then a coalition

blocks an allocation if and only if it weakly blocks it. Hint: the surplus can be

divided. Consider zi = (1− δ)yi por δ small enough, and zj =
δyi

|S|−1 + yi.

Note. Form now, preferences will be continuous and strictly monotonic.

2. Conclude that, from Note 7, the only relevant allocations will be =.

Remark. Note that:

� If each preference relation is continuous and strictly monotonic, then all

core allocations are Pareto Optimal, i.e., C(E) ⊆ P(E).

� An allocation x of E is individually rational if xi ⪰i ωi for all i = 1, . . . , I.

� If x ∈ C(E), then x is individually rational.

Theorem 60. Every Walrasian Equilibrium allocation is a core allocation, i.e.,

W(E) ⊂ C(E).

3. Prove Theorem 60.

De�nition 61. Replica Economy. Let E = (⪰i, ωi)
I
i=1 be an exchange econ-

omy and N ≥ 1 be an integer. The N -th replica of E , denoted as EN =

(⪰i,n, ωi,n)i=1,...,I,n=1,...,N , is an exchange economy where agents are indexed

by (i, n), and it holds that for every n = 1, . . . , N , ⪰i=⪰i,n and ωi = ωi,n. Note

that the replica EN comprises IN agents.

De�nition 62. Equal Treatment Property. An allocation

x = (xi,n)i=1,...,I,n=1,...,N

of EN exhibits the equal treatment property if xi,n = xi,m for all n,m = 1, . . . , N

and i = 1, . . . , I.

Lemma 63. Assume ⪰i is strictly monotonic, continuous, and strictly convex

for every i = 1, . . . , I. Then, every allocation in C(EN ) possesses the equal

treatment property. As a result, core allocations of EN can be represented as

vectors in RIL
+ , and C(EN ) is a subset of RIL

+ , as are the Walrasian allocations.
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Remark. Let E = (⪰i, ωi)
I
i=1 be an exchange economy with continuous, strictly

monotonic, and strictly convex preferences. Consider the following:

(i) The core of a replica economy diminishes as the number of replicas in-

creases: ∀N,C(EN ) ⊇ C(EN+1) ⊇ C(EN+2) ⊇ · · · .

(ii) The equilibrium allocations of EN can be represented as allocations in E ,
i.e., the elements in W(EN ) can be depicted in RIL

+ .

(iii) W(EN ) = W(E) for every N .

(iv) An equilibrium allocation of E is part of the core of every replica economy

EN : W(E) ⊆
⋂∞

N=1 C(EN ).

Theorem 64. Debreu-Scarf Core Convergence Theorem. Let E = (⪰i

, ωi)
I
i=1 be an exchange economy where ⪰i is continuous, strictly monotonic,

strictly convex, and ωi > 0 for all i. Also, assume ω ≥ 0. If x∗ ∈ C(EN ) for

every N ≥ 1, then x∗ ∈ W(E). In other words,

W(E) =
∞⋂

N=1

C(EN ).

Proof. See F. Echenique's lecture notes. The proof is not trivial.

The Debreu-Scarf Core Convergence Theorem provides signi�cant insights

into the behavior of competitive equilibria in large replicated economies. Here

we outline the core ideas that underpin the theorem:

1. Core of an Economy: The core is de�ned as the set of allocations

where no subgroup (coalition) of agents can rearrange their own resources

among themselves to make everyone in the group better o�, given the total

resources available to them.

2. Replication of the Economy: The theorem considers an N -th replica

of the original economy, creating multiple copies of each agent with iden-

tical preferences and endowments. As N increases, each agent's in�uence

diminishes, approximating the conditions of perfect competition where

agents are price-takers.
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3. Reduced Market Power: In smaller economies, individuals or small

groups can have signi�cant market power. As the economy is replicated,

this power is diluted because the relative in�uence of any single agent be-

comes negligible, pushing the economy toward a competitive equilibrium.

4. Convergence to Walrasian Allocations: In the limit, as the num-

ber of replicas becomes in�nitely large, the core allocations converge to

Walrasian allocations. This implies that competitive equilibrium, where

market supplies meet demands at certain prices, is a likely outcome in

very large economies.

5. Economic Implications: This convergence bridges cooperative game

theory (the core) and non-cooperative market theory (competitive equi-

libria), demonstrating under what conditions these theoretical frameworks

align and predict the same outcomes in large markets.

Conclusion: The Debreu-Scarf theorem illustrates why, in su�ciently large

economies, competitive market theory is not just a theoretical ideal but an

inevitable outcome of rational economic behavior.
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8 Welfare and aggregation

We now shift our perspective from the market to that of a social planner and

consider an exchange economy with production:

E = {{ωi,⪯i}i=1,...,I , (Y
j)j=1,...,J , θij}.

Given the economy E , we consider the set

X =

{
(x1, x2, ..., xI) ≥ 0 :

I∑
i=1

xi ∈ ω + Y

}
.

The goal is to aggregate individual preferences to derive a "social preference".

Remark. Unfortunately, Arrow's Impossibility Theorem tells us that this ag-

gregation cannot be conveniently done:

1. Unrestricted domain: considers the preferences of all individuals.

2. Pareto e�ciency: if all individuals prefer allocation x over y, social

preference must preserve this order.

3. Non-dictatorial: the aggregation should not always re�ect the prefer-

ence of any single individual.

4. Independence of irrelevant alternatives: the social preference be-

tween two options depends only on individual preferences regarding them.

Theorem 65. Arrow. There is no social aggregation rule that is unrestricted

in domain, respects unanimity, is non-dictatorial, and maintains independence

from irrelevant alternatives.

Due to Arrow's Theorem, some assumptions must be sacri�ced in order to

perform the aggregation. What is constructed is a Social Welfare Function.

Speci�cally, we have the following de�nition.

De�nition 66. Given an economy E and the corresponding set of feasible al-

locations X, we �x for each preference ⪯i a utility function ui that represents

it. A Social Welfare Function (SWF) is

W : X → R

(x1, ..., xI) → W (u1(x1), ..., uI(xI)).
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Remark. In reality, a prior transformation is performed so that each point in

the Edgeworth box corresponds to a point in RI where each dimension corre-

sponds to ui(xi). Moreover, the set of Pareto optima corresponds to the frontier

of the set formed in RI . Formally,

U = {(u1, ..., uI) ∈ RI : ∃ (x, y) feasible with ui ≤ ui(xi), i = 1, ..., I}.

Then,

W : U → R.

De�nition 67. A SWF is increasing if ∀ u, u′ ∈ U , with u ≥ u′, it holds that

W (u) ≥ W (u′) and if u ≫ u′ then W (u) > W (u′). A SWF is strictly increasing

if u ≥ u′ and u ̸= u′ imply that W (u) > W (u′).

1. Utilitarian: W (u1, ..., uI) =
∑I

i=1 βiu
i. Indi�erent to inequality.

2. Rawlsian: W (u1, ..., uI) = mini=1,...,I{βiu
i}. Maximally averse to inequal-

ity.

3. CES (assuming ui ≥ 0)

W (u1, ..., uI) =

(
I∑

i=1

(βiu
i)1−ρ

) 1
1−ρ

W (u1, ..., uI) =

I∑
i=1

βi lnu
i, ρ = 1.

The parameter ρ measures indi�erence to inequality. ρ = 0 corresponds to the

utilitarian and ρ → ∞ to the Rawlsian.

Remark. The goal of the social planner is to solve

max W (u1, ..., uI)

s.a.(u1, ..., uI) ∈ U.

On U , we can identify the Pareto Frontier

P = {u ∈ U : ̸ ∃u′ ∈ U such that ∀ i : u′
i ≥ ui, ∃ u′

i > ui}.

Proposition 68. An allocation (x, y) is Pareto optimal if and only if

(u1(x1), ..., uI(xI)) ∈ P.
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Proposition 69. If the SWF W is increasing, the social planner's problem has

a solution in P .

Next, we work with the utilitarian function.

Theorem 70. If U is convex

1. Given u ∈ P , there exist βi ≥ 0, not all zero, such that the SWF

W (u1, ..., uI) =
∑I

i=1 βiu
i reaches a maximum over U at u.

2. Every utilitarian SWF reaches its maximum on U if it is convex.

The following are equivalent:

max
(u1,...,uI)

I∑
i=1

βiu
i

s.a. (u1, ..., uI) ∈ U

and

max
(x1,...,xI)

I∑
i=1

βiu
i(xi)

s.a.

I∑
i=1

xi −
I∑

i=1

ωi =

J∑
j=1

yj

xi ≥ 0

yj ∈ Y j .

If each Y j is de�ned by F j(yj) ≤ 0,

max
(x1,...,xI)

I∑
i=1

βiu
i(xi)

s.a.

I∑
i=1

xi −
I∑

i=1

ωi =

J∑
j=1

yj

xi ≥ 0

F j(yj) ≤ 0.

Assuming di�erentiability, concavity, and convexity, we conveniently obtain the

optimality conditions
∂ℓu

i

∂ℓ′ui
=

λℓ

λℓ′
=

∂ℓF
j

∂ℓ′F j
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for any combination of indices i, j, ℓ and ℓ′.

On the other hand, each consumer i solves

max
xi≥0

ui(xi)

s.a. pxi ≤ W i

whose solution is characterized by

∂ℓu
i

∂ℓ′ui
=

pℓ
pℓ′

.

Meanwhile, each �rm j solves

max pyj

s.a. F j(yj) ≤ 0,

whose solution is characterized by

∂ℓF
j

∂ℓ′F j
=

pℓ
pℓ′

.

Thus, the marginal rates are equal to the price ratios.

Remark. The coe�cients βi are the inverses of the multipliers γ
i such that

∂ℓu
i(xi) = γipℓ.

8.1 Negishi's Method

1. Every Walrasian equilibrium is a Pareto optimum.

2. Every Pareto optimum can be solved as a problem of the type:

max
(x1,...,xI)

I∑
i=1

βiu
i(xi)

s.a.

I∑
i=1

xi −
I∑

i=1

ωi =

J∑
j=1

yj

xi ≥ 0

F j(yj) ≤ 0.

3. Every Pareto optimum is a Walrasian equilibrium with transfers.
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4. Every Walrasian equilibrium is a Walrasian equilibrium with zero trans-

fers.

5. If the statements are valid, Negishi's method can be applied, which in-

volves:

a) Solving the problem for Pareto optima taking βi as parameters.

b) Calculating the prices according to βi.

c) Calculating transfers according to βi.

d) Finding the parameter set that makes the transfers zero.

e) With the βi found, determining the prices and allocations of equilib-

rium.

Let (⪰i)
I
i=1 be a collection of preferences where each ⪰i is represented by

a utility function ui : RL
+ → R. Consider an economy identi�ed by a vector of

endowments ω ∈ RIL
+ , structured such that for each ω ∈ RIL

+ , (⪰i, ωi)
I
i=1. An

economy has a �xed structure of endowments if there exists α = (αi)
I
i=1 ∈ RI

+

with
∑I

i=1 αi = 1 and ωi = αiω.

Theorem 71. Eisenberg's Theorem. Assume that each ⪰i is represented by

a continuous and homogenous degree one utility function ui. Then the aggregate

demand of the economy is generated by a representative consumer, whose utility

function U : RL
+ → R is given by:

U(x) = max
(x1,...,xI)∈RIL

+

(
I∑

i=1

(ui(xi))
αi

)
s.t. x =

I∑
i=1

xi
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9 Conclusion

Throughout these lecture notes, we have extensively explored the foundational

and complex aspects of general equilibrium theory, from basic 2×2 economy

models to more sophisticated scenarios involving production and pure exchanges.

These discussions have been vital in understanding resource allocation and e�-

ciency within various economic frameworks.

While studying models with in�nitely many goods might not be at the cut-

ting edge of new economic research, they o�er crucial insights and are vital for

deepening our understanding of theoretical economics. These models require

robust mathematical tools, speci�cally from topology and functional analysis,

to tackle their complexities e�ectively. For those interested in delving further

into this area, the work by Araujo and Klinger Monteiro, provides foundational

insights (Aloisio Araujo & Paulo Klinger Monteiro 1992).
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