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1 Introduction

The following model introduces the main theoretical results of the matter from
an economic point of view. We will consider identical and in�nitely lived house-
hold, t ∈ Z+, a consumption good yt which is produced using capital stock and
labor

yt = F (kk, `t),

and we denote consumption by ct and investment by it [Lucas et al. (1989)].
Since there are no exports, imports, government expenditure, or other kind of
economic contribution source,

ct + it ≤ yt.

This consumption-saving decision is the only allocation decision the economy
must make.

Now, capital stock is assumed to depreciate at a constant rate 0 < δ < 1.
Thus, since investment is used to acquire more capital,

kt+1 = (1− δ)kt + it.

We will consider that labour is supplied exogenously. Finally, since current
consumption is preferred over future consumption, the optimization problem
which is considered is

max

∞∑
t=0

βtU(ct)

s.t. :kt+1 = (1− δ)kt + it

ct + it ≤ yt
yt = F (kt, `t)

k(0) = k0.

Here the discount term is β ∈ (0, 1).
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1.1 Preliminaries

De�nition 1. The production function F : R2
+ → R+ is class C1, strictly

increasing, homogeneous of degree-one and strictly concave

F (0, `) = 0

∂F (k, `)

∂k
> 0

∂F (k, `)

∂`
> 0

lim
k→0

∂F (k, 1)

∂k
= +∞

lim
k→∞

∂F (k, 1)

∂k
= 0.

There properties are studied with much more detail in Barro and i Martin
(2003).

Remark. Since it = kt+1 − (1− δ)kt,

ct + kt+1 − (1− δ)kt ≤ F (kt, `t).

De�nition 2. The objective function of the multi-stage optimization problem
PD is

u(c0, c1, ...) =

∞∑
t=0

βtU(ct).

This de�nition is explained in [Mas-Colell et al. (1995)], [Varian (1992)] or [Grav-
elle and Rees (2004)]. Here U : R+ → R is bounded, continuously di�erentiable,
strictly increasing and strictly concave. Furthermore,

lim
c→0

U ′(c) =∞.

Remark. The objective is to choose the sequence {ct, kt+1, `t}∞t=0.

Remark. Considering the equality

ct + it = F (kt, `t) , F (kt, 1)

and the dynamic for kt, we have, de�ning f(kt) = F (kt, 1) + (1− δ)kt, that

ct = f(kt)− kt+1.

Thus, the PD is rewritten as follows

max
{kt+1}∞t=0

∞∑
t=0

βtU [f(kt)− kt+1]

s.t.:0 ≤ kt+1 ≤ f(kt)
k0 < 0, given.
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Remark. Although ultimately we are interested in the case where the planning
horizon is in�nite, it is possible to have problems of the kind

max
{kt+1}∞t=0

T∑
t=0

βtU [f(kt)− kt+1]

s.t.:0 ≤ kt+1 ≤ f(kt)
k0 < 0, given.

In such a case, it would only be a standard concave programming problem
where {kt}Tt=0 ⊂ RT+1, is a convex, closed and bounded set. Here the solution
is completely characterized by Kuhn-Tucker conditions Acemoglu (2009)

βf ′(kt)U
′(f(kt)− kt+1) = U ′(f(kt−1)− kt), t = 1, ..., T

kT+1 = 0.

Indeed,

d

dkt

(
T∑
t=0

βtU [f(kt)− kt+1]

)
= 0

implies

βtf ′(kt)U
′[f(kt)− kt+1] + βt−1(−1)U ′[f(kt−1)− kt] = 0.

This is,
βf ′(kt)U

′[f(kt)− kt+1] = U ′[f(kt−1)− kt]. (1)

Since 0 ≤ kt+1 ≤ f(kt), U ′(0) =∞,

kT+1 = 0.

Example 3. Let f(k) = kα, 0 < α < 1 and U(c) = ln(c). From (1), we obtain

βαkα−1t

(
1

kαt − kt+1

)
=

(
1

kαt−1 − kt

)
. (2)

Let zt = kt/k
α
t−1. Thus, (2) becomes

βαkα−1t

(
1

kαt (1− zt+1)

)
=

(
1

kαt−1(1− zt)

)
. (3)

Simplifying (3),

βαk−1t (1− zt) =
1− zt+1

kαt−1
. (4)

zt+1 = 1− βα(1− zt)
zt

. (5)

Finally, by induction,

zt = αβ

(
1− (αβ)T−t+1

1− (αβ)T−t+2

)
kt+1 = αβ

(
1− (αβ)T−t

1− (αβ)T−t+1

)
kαt , t = 0, 1, ..., T.

3



Remark. What happens if we take T →∞? kt+1 = αβkαt . Is this the solution?
Actually, it is not as easy as take T → ∞. We will now focus in the in�nite
horizon case. For this, we will start afresh.

1.2 General case

The problem that faces the planner in period t = 0 is that of choosing today's
consumption (c0), and tomorrow's beginning-of-period capital k1, nothing else.
If the preferences of the planer, over c0 and k1, are known, we could simply
maximize over (c0, k1). Assume that PD is already solved, with kt+1 = g(kt).
Then, we could de�ne v : R+ → R by taking v(k0) to be the value of the
maximized objective function in PD. This function is known as value function.
With v so de�ned, v(k1) would give the value of the utility from period t = 1 on
that could be obtained with k(t1) = k1 and βv(k1) would be the value of this
utility discounted bak to period t = 0. Then, the planner's problem P̃D would
be

max
c0,k1

U(c0) + βv(k1)

s.t. c0 + k1 ≤ f(k0)
c0, k1 ≥ 0, k0 > 0, given.

If the function v were known, we could use to de�ne a function g : R+ → R+ as
follows, for each k0 ≥ 0, let k1 = g(k0) and c0 = f(k0)− g(k0) be the functions
that attain the maximum in P̃D.

Remark. If v(k0) solves PD,

v(k0) = max
0≤k1≤f(k0)

{U [f(k0)− k1] + βv(k1)}.

Notice that when the problem is looked at in this recursive way, we can simply
rewrite

v(k) = max
0≤y≤f(k)

{U [f(k)− y] + βv(y)}. (6)

Moreover, (6) is a functional equation and the problem which is faced is called
a dynamic programming problem. If we knew that v was di�erentiable and that
the maximizing value of y was interior, then by F.O.C,

U ′[f(k)− g(k)] = βv′[g(k)]

v′(k) = f ′(k)U ′[f(k)− g(k)].

The �rst equation equates the marginal utility of consuming current output to
the marginal utility of allocating it to capital and enjoying augmented consump-
tion next period. The second equation states that the marginal value of current
capital and the marginal utility of using capital stock in current production and
allocating its return to current consumption.
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2 Existence and uniqueness

Recall that PD leads to (6). Our purpose now is to prove the existence and
uniqueness of a function v satisfying (6), and to derive its properties. For this,
we will de�ne the following sequence

vn+1(k) = max
0≤y≤f(k)

{U [f(k)− y] + βvn(y)}, n = 0, 1, 2, ... (7)

How to prove that there exists v such that vn → v? The idea is to use a �xed
point argument [Ok (2007)]. Notice that the sequence {vn}n∈N is increasing
[Lucas et al. (1989)].

2.1 Some preliminaries from Real Analysis

De�nition 4. A real vector space V is a set of vectors together with two
operations, addition and scalar multiplications. For any two vectors x, y ∈ V ,
x + y ∈ V , and for every x ∈ V and α ∈ R, αx ∈ V . These operations must
obey some algebraic rules that we state next right below. Given x, y ∈ V and
α, β ∈ R

1. x+ y = y + x

2. (x+ y) + z = x+ (y + z)

3. α(x+ y) = αx+ αy

4. (α+ β)x = αx+ βy

5. (αβ)x = α(βx)

6. ∃ θ ∈ V (zero vector) such that x+ θ = x

7. 0x = θ

8. 1x = x.

Example 5. The sets RL,CL, X = {x ∈ R2 : x = az, a ∈ R}, z ∈ R2,
C0([0, 1],R) are real vector spaces, while Z and S1 are not.

De�nition 6. A metric space is a set X with a metric (distance function),
d : X ×X → R such that, for any x, y, z ∈ X

1. d(x, y) ≥ 0, with equality if and only if x = y.

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z).

We usually denote (X, d).

Example 7. The sets
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� (Z, |x− y|)

� C0([a, b], ↑,maxa≤t≤b |x(t)− y(t)|)

� C0
(
[a, b], ↑,

∫ b
a
|x(t)− y(t)|dt

)
are metric spaces.

De�nition 8. A real vector normed space is a vector space X together with a
norm || · || : X → R which satis�es the following properties. Given x, y ∈ S y
α ∈ R,

1. ||x|| ≥ 0 with equality if and only if x = θ.

2. ||αx|| = |α| · ||x||

3. ||x+ y|| ≤ ||x||+ ||y|| (triangle inequality).

Example 9. The following are norms

1. ||x||2 =
√∑L

i=1 x
2
i , X = RL

2. ||x||max = max1≤i≤L{|xi|}, X = RL

3. ||x||1 =
∑L
i=1 |xi|, X = RL

4. ||f ||1 =
∫ b
a
|f(t)|dt, X = C0([a, b],R)

5. ||f ||∞ = supa≤t≤b |f(t)|, X = C0([a, b],R).

De�nition 10. A sequence {x}n≥0 in (X, d) converges to x ∈ X if for each
ε > 0, there exists Nε such that

d(xn, x) < ε, n > Nε.

Remark. If we want to verify the convergence it is needed to have a candidate
for the limit point x (which is, by the way, in RL, unique1). When a candidate
is not immediately available, the following result is often useful.

De�nition 11. A sequence ({xn}∞n=0) ⊂ X is a Cauchy sequence if for every
ε > 0, there exists Nε such that

d(xn, xm) < ε, n,m ≥ Nε.

Proposition 1. A Cauchy sequence is convergent and a convergent sequence is
a Cauchy sequence.

De�nition 12. A metric space (X, d) is complete if every Cauchy sequence in
X converges to an element in X.

1In every Hausdor� space.
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Example 13. (R, | · |) is a complete metric space.

De�nition 14. A Banach space is a complete normed space.

Lemma 15. Let X ⊂ RL, and let C(X) be the set of bounded continuous
functions f : X → R with sup norm ||f ||∞ = supx∈X |f(x)|. Then, C(X) is a
normed vector space.

Proof. The fact that is a normed vector space is by de�nition. To see that || · ||∞
de�ned a norm, �rst, notice that

0 ≤ sup
x∈X
|f(x)| = 0⇒ f(x) = 0, ∀ x ∈ X.

By continuity, f = θ. Then, trivially ||f ||∞ ≥ 0. Then, given α ∈ R

||αf ||∞ = sup
x∈X
|αf(x)| = sup

x∈X
|α| · |f(x)| = α sup

x∈X
|f(x)| = |α| · ||f ||∞.

Finally, the triangle inequality follows from the usual triangle inequality for | · |,

|f + g| ≤ |f |+ |g|.

Since this is for every x ∈ X, |f |+ |g| is upper bound for |f + g|. Thus, by the
de�nition of the supremum,

||f + g||∞ = sup
x∈X
|f + g| ≤ |f |+ |g| ≤ sup

x∈X
|f |+ sup

x∈X
|g| = ||f ||∞ + ||g||∞.

In all moment it is used that ||ϕ||∞ <∞.

Theorem 16. The set C(X) is a complete normed vector space.

The proof is given in Lucas et al. (1989). Now, we are able to address the
main result which is needed to study our problem (7), the Contraction Mapping
Theorem.

De�nition 17. Let (X, d) be a metric space and T : X → X be a function
mapping X to itself. Then, T is a contraction mapping with modulo θ ∈ (0, 1)
if d(Tx, Ty) ≤ θd(x, y), ∀ x, y ∈ X.

De�nition 18. A �xed point x ∈ X is such that Tx = x.

Theorem 19. (Contraction Mapping Theorem.) If (X, d) is a complete
metric space and T : X → X a contraction mapping with modulus θ, then

1. T has exactly one �xed point x∗ ∈ X.

2. For any x0 ∈ X, d(Tnx0, x
∗) ≤ θnd(x0, x∗).

Proof. Take x0 ∈ X and de�ne {xn}∞n=0 recursively by xn+1 = Txn so that
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xn = Tnx0. Then, by the contraction property,

d(x2, x1) = d(Tx1, Tx0) ≤ θd(x0, x1)
d(x3, x2) = d(Tx2, Tx1) ≤ θd(x2, x1) ≤ θ2d(x0, x1)

...

d(xn+1, xn) ≤ θnd(x1, x0).

For any m > n,

d(xm, xn) ≤ d(xm, xm−1) + ...+ d(xn+1, xn)

≤ θmd(x1, x0) + ...+ θnd(x1, x0)

=

(
m∑
k=n

θk

)
d(x1, x0)

≤ θn

1− θ
d(x1, x0).

Since X is complete, it follows that xn → x∗ for some x∗ ∈ X. Furthermore,

d(x∗, Tx∗) ≤ d(Tx∗, Tnx0) + d(Tnx0, x
∗) ≤ θd(x∗, Tn−1x0) + d(Tnx0, x

∗)→ 0.

Finally, to show the uniqueness, assume there exists y ∈ X, y 6= x∗ s.t. Ty = y.
Then,

0 < a = d(x∗, y) = d(Tx∗, T y) ≤ θd(x∗, y) = θa ⇒⇐.

Theorem 20. (Blackwell). Let X ⊂ RL and B(X) be the set of all bounded
functions from X to R, with respect to || · ||∞. Then, let T : B(X)→ B(X) be
an operator satisfying

1. Monotonicity: f, g ∈ B(X), f(x) ≤ g(x)⇒ T (f(x)) ≤ T (g(x)).

2. There exists β ∈ (0, 1) such that

T (f + a)(x) ≤ Tf(x) + βa, (f + a)(x) = f(x) + a

Then T is a contraction.

Proof. If f(x) ≤ g(x) and

T (f)(x) ≤ T (g)(x),

then, since f ≤ g + ||f − g||

Tf ≤ T (g + ||f − g||) ≤ T (g) + β||f − g||.

Thus,
||Tf − Tg|| ≤ β||f − g||.
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