Programación Dinámica con horizonte de tiempo infinito Método recursivo

Marcelo Gallardo Burga

PUCP

Enero 2023

Índice

- El problema de optimización
- 2 Breve notas sobre las correspondencias
- Objetivo
- Preliminares
- Punto fijo
- 6 Blackwell

El problema de optimización

El problema de optimización que buscamos resolver es el siguiente

$$\mathcal{P}_{\infty}: \begin{cases} \max_{\{x_t\}_{t=0}^{\infty}} & \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1}) \\ s.a. & x_{t+1} \in \Gamma(x_t) \\ & x_0 \text{ dado.} \end{cases}$$

- **1** $\Gamma: X \to \mathcal{P}(X), X \subset \mathbb{R}^n$ es una correspondencia no vacía, compacta y *continua*.
- **2** $F \ge 0$.
- Eventualmente, se exige que $\exists M > 0$ tal que |F(x,y)| < M y ciertamente, $\beta \in (0,1)$.
- $x_0 \in \mathbb{R}^n.$
- F cóncava.

Observación

En caso se asegure que |F(x,y)| < M, como $eta \in (0,1)$ y $F \geq 0$

$$\sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1}) \leq \frac{M}{1-\beta}.$$

Correspondencias

Sea $\Gamma: X \to \mathcal{P}(Y)$ (también se denota $\Gamma: X \rightrightarrows Y$), donde X y Y son dos espacios topológicos.

Definición

Decimos que Γ es *upper-hemicontinua* si dados $x \in X$, $\Gamma(x) \in 2^Y$, $\forall \mathcal{N}_{\Gamma(x)} \in \mathcal{T}_Y$, $\exists V_x \in \mathcal{T}_X$ tal que $\forall z \in V_x$, $\Gamma(z) \subset \mathcal{N}_{\Gamma(x)}$. Esto para todo $x \in X$.

Definición

Decimos que Γ es *lower-hemicontinua* si $\forall \mathcal{N}$ tal que $\mathcal{N} \cap \Gamma(x) \neq \emptyset$, $\exists V_x$ tal que dado $z \in V_x$, $\Gamma(z) \cap \mathcal{N} \neq \emptyset$. Esto para todo $x \in X$.

Definición

Decimos que Γ es continua cuando es a la vez *lower-hemicontinua* y *upper-hemicontinua*

Correspondencias

Ejemplo

Consideremos la correspondencia que se había definido para el problema de los hogares,

$$\Gamma(x) = [0, f(x) + (1 - \delta)x],$$

donde f es una función de producción clase C^2 . Entonces, si $[0, f(x) + (1-\delta)x] \subset (a,b)$, podemos encontrar $\delta > 0$ tal que si $|x-z| < \delta$

$$[0, f(z) + (1 - \delta)z] \subset (a, b).$$

Básicamente nos preocupa que $f(z)+(1-\delta)z < b$. Pero, como $g(t)=f(t)+(1-\delta)t$ es continua, se puede asegurar lo deseado. Ahora, respecto a la lower-hemicontinuity si $[0,f(x)+(1-\delta)x]\cap (a,b)\not \emptyset$, es posible encontrar $z\in B(x,\delta)$ tal que $[0,f(z)+(1-\delta)z]\cap (a,b)\ne\emptyset$. Nuevamente, gracias a la continuidad de g.

Correspondencias

Ejemplo

Sea $\Gamma: \mathbb{R} \to \mathcal{P}(\mathbb{R})$

$$\Gamma(x) = \begin{cases} 0, & x \neq 0 \\ \mathbb{R}, & \text{si } x = 0. \end{cases}$$

Esta correspondencia es upper-hemicontinuous pero no lower-hemicontinuous. En efecto, sea $x \neq 0$, $\Gamma(x) = 0$, $\mathcal{N} = (-\delta, \delta)$ y $z \in \mathcal{V}_x = (x - |x|/2, x + |x|/2)$, entonces $\Gamma(z) = 0 \in \mathcal{N}$. Si x = 0, entonces $\Gamma(x) = \mathbb{R} \subset V_{\Gamma(x)}$. Entonces, para cualquier vecindad de x, $\Gamma(z) = 0 \in \mathbb{R}$ ($z \neq 0$). Ahora, veamos que no es l.h.c. Si x = 0, y tomamos $z \in (-\delta, \delta) - \{0\}$, $\Gamma(z) = 0$. Así, para $\mathcal{N} = (1, 2)$, $\mathcal{N} \cap \Gamma(z) = \emptyset$.

Definition

El conjunto $\tilde{x} = \{x_t\}_{t=0}^{\infty}$ se conoce como plan y

$$\Pi(x_0) = \{ \tilde{x} : x_{t+1} \in \Gamma(x_t), \ \forall \ t, \ x(0) = x_0 \}$$

es el conjunto de planes asequibles. Finalmente,

$$u(\tilde{x}) = \lim_{T \to \infty} \sum_{t=0}^{T} \beta^{t} F(x_{t}, x_{t+1})$$

el valor del plan.

Definamos

$$V^*(x_0) = \sup_{\{x_t\}} \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1})$$
$$x_{t+1} \in \Gamma(x_t)$$
$$x_0 \text{ dado.}$$

Nuestro objetivo, recordemos, es obtener un plan $\tilde{x}^* \in \Pi(x_0)$ tal que $\sum_{t=0}^{\infty} \beta^t F(x_t^*, x_{t+1}^*) = V^*(x_0)$.

Principio de optimalidad

Por un lado, tenemos el problema secuencial

$$V^*(x_0) = \max \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1}), \ s.a.: \ x_{t+1} \in \Gamma(x_t).$$

Observación

El problema se escribe también, de forma más compacta, $V^*(x_0) = \max_{\tilde{x} \in \Pi(x_0)} u(\tilde{x})$.

Entonces, nuestro objetivo es encontrar el plan x^* que nos permite alcanzar dicho valor V^* dada la condición inicial. Por otro lado, definamos la siguiente ecuación funcional (de Bellman)

$$V(x) = \max_{y \in \Gamma(x)} \left\{ F(x, y) + \beta V(y) \right\}. \tag{1}$$

Resolver (1) es encontrar V que satisface la ecuación funcional. Definamos también la correspondencia

$$G(x) = \operatorname{argmax}_{y \in \Gamma(x)} \{ F(x, y) + \beta V^*(y) \}.$$

Proposición

Supóngase que $V^*(x)$ está bien definida (alternativamente, que se cumplan todos los supuestos). Entonces, para todo $x \in X$, V^* satisface la ecuación funcional.

Prueba.

Sea $x_0 \in X$ arbitrario y $\{x_t^*\}_{t=0}^{\infty}$ plan óptimo (factible y que maximiza):

$$V^*(x_0) = F(x_0, x_1^*) + \sum_{t=1}^{\infty} \beta^t F(x_t^*, x_{t+1}^*) \ge \underbrace{F(x_0, x_1) + \sum_{t=1}^{\infty} \beta^t F(x_t, x_{t+1})}_{\forall \ \bar{x} \in \Pi(x_0)}.$$

Sea $x_1 \in \Gamma(x_0)$ arbitrario, y sea $\{x_t\}_{t=1}^{\infty}$ un plan óptimo partiendo desde x_1 . Es decir,

$$V^*(x_1) = \sum_{t=1}^{\infty} \beta^{t-1} F(x_t, x_{t+1}).$$

Prueba.

Entonces,

$$F(X_0, x_1^*) + \beta \sum_{t=1}^{\infty} \beta^{t-1} F(x_t^*, x_{t+1}^*) \ge F(x_0, x_1) + \beta V^*(x_1), \ \forall \ x_1 \in \Gamma(x_0).$$

En particular, tomando $x_1 = x_1^*$,

$$\sum_{t=1}^{\infty} \beta^{t-1} F(x_t^*, x_{t+1}^*) \geq V^*(x_1^*).$$

No obstante, $\{x_t^*\}_{t=1}^{\infty}$ es factible partiendo de x_1^* . Así,

$$\sum_{t=1}^{\infty} \beta^{t-1} F(x_t^*, x_{t+1}^*) = V^*(x_1^*).$$

De este modo,

$$V^*(x_0) = F(x_0, x_1^*) + \beta V^*(x_1) \ge F(x_0, x_1) + \beta V^*(x_1), \ \forall \ x_1 \in \Gamma(x_0),$$

lo cual nos permite concluir haciendo $x_1 = y$ y $x = x_0$.

Preliminares

Lema

Supongamos que todos los supuestos se satisfacen. Entonces, dado un plan $ilde{x}\in\Pi(x_0)$

$$u(\tilde{x}) = F(x_0, x_1) + \beta u(\tilde{x}')$$

donde $\tilde{x} = (x_0, x_1, ...)$ y $\tilde{x}' = (x_1, x_2, ...)$.

Prueba.

$$u(\tilde{x}) = \lim_{T \to \infty} \sum_{t=0}^{T} \beta^{t} F(x_{t}, x_{t+1})$$

$$= F(x_{0}, x_{1}) + \lim_{T \to \infty} \sum_{t=1}^{T} \beta^{t} F(x_{t}, x_{t+1})$$

$$= F(x_{0}, x_{1}) + \beta \lim_{T \to \infty} \sum_{t=0}^{T} \beta^{t} F(x_{t+1}, x_{t+2})$$

$$= F(x_{0}, x_{1}) + \beta u(\tilde{x}').$$

Preliminares

Definición

Diremos que ${\it V}$ satisface la ecuación funcional si

• Si $|V(x)| < \infty$, $V(x) \ge F(x,y) + \beta V(y)$ para todo $y \in \Gamma(x)$ y dado $\varepsilon > 0$, existe $y \in \Gamma(x)$ tal que

$$V(x) \leq F(x,y) + \beta V(y) + \varepsilon.$$

- ② Si $V(x) = \infty$, existe una sucesión $y_k \in \Gamma(x)$ tal que $\lim_{k \to \infty} [F(x, y_k) + \beta V(y_k)] = \infty$.
- **3** Si $V(x) = -\infty$, $F(x, y) + \beta V(y) = -\infty$ para cualquier $y \in \Gamma(x)$.

Observación

Dado los supuestos *más robustos*, nos interesamos únicamente en la primera condición.

Theorem

Sea V solución de (1) (FE). Supongamos que se satisfacen los supuestos y que

$$\lim_{n\to\infty}\beta^n v(x_n)=0, \ \forall \ \tilde{x}\in \Pi(x_0).$$

Entonces $V = V^*$.

Prueba.

Por un lado, por la definición de solución a(1)

$$V(x_{0}) \geq F(x_{0}, x_{1}) + \beta V(x_{1}),$$

$$\geq F(x_{0}, x_{1}) + \beta (F(x_{1}, x_{2}) + \beta V(x_{2}))$$

$$= F(x_{0}, x_{1}) + \beta F(x_{1}, x_{2}) + \beta^{2} V(x_{2})$$

$$\vdots$$

$$\geq \sum_{t=0}^{n} \beta^{t} F(x_{t}, x_{t+1}) + \beta^{n+1} V(x_{n+1}), \ \forall \ n \in \mathbb{N}.$$

Acá $x_{t+1} \in \Gamma(x_t)$ en todo momento. Tomando límite,

$$V(x_0) \geq u(\tilde{x}), \ \forall \tilde{x} \in \Pi(x_0).$$

Prueba.

Ahora, sea $\varepsilon>0$ y $\{\delta_t\}_t\in\mathbb{R}_+$ de forma que $\sum_{t=1}^\infty \beta^{t-1}\delta_t\leq \varepsilon/2$. Como V cumple la FE

$$V(x_{t}) \leq F(x_{t}, x_{t+1}) + \beta V(x_{t}) + \delta_{t}, \ \forall \ t$$

$$\leq \sum_{t=0}^{n} \beta^{t} F(x_{t}, x_{t+1}) + \beta^{n+1} V(x_{n}) + \sum_{t=0}^{n} \delta_{t+1} \beta^{t}$$

$$\leq u_{n}(\tilde{x}) + \beta^{n+1} V(x_{n+1}) + \varepsilon/2, \ n = 1, ..., 2$$

$$\leq u_{n}(\tilde{x}) + \varepsilon \ (n \to \infty).$$

Ejemplo

Veamos que si se viola el supuesto (condición de transversalidad), puede que $V
eq V^*$.

$$\begin{cases} \max & \sum_{t=0}^{\infty} \beta^t u(c_t) \\ & \text{s.a } 0 \le c_t \le x_t - \beta x_{t+1} \end{cases}$$

Notemos que haciendo $R=1/\beta-1^a$, se convierte en un problema de retorno-consumo. Luego, $x_t=\beta^{-t}x_0\in\Pi(x_0)$ por lo que se viola la condición de transversalidad pues

$$\lim_{t\to\infty}\beta^t v(x_t)=x_0\neq 0$$

dado que

$$v(x) = \sup_{y \le x/\beta} \{x - \beta y + \beta v(y)\}\$$

admite por solución v(x)=x. Sin embargo, $v^*=\infty$ dado que, se puede endeudar consumiendo $x_0\beta^{-t}$.

 $^{{}^{}a}\beta=rac{1}{1+R}$, R el interés, puede prestar o endeudarse.

Theorem

Supongamos que todos los supuestos se satisfacen y que $\tilde{x}^* \in \Pi(x_0)$ es óptimo, o sea $u(\tilde{x}) = v^*(x_0)$. Entonces,

$$v^*(x_t^*) = F(x_t^*, x_{t+1}^*) + \beta v^*(x_{t+1}^*).$$

Acá v = V.

Theorem

Supongamos que todos los supuestos se satisfacen y que $\tilde{x}^* \in \Pi(x_0)$ y

$$\lim_{t \to \infty} \sup \beta^t v^*(x_t^*) \le 0. \tag{2}$$

Entonces, \tilde{x}^* es tal que $u(\tilde{x}^*) = v^*(x_0)$.

Prueba.

El plan $\tilde{x}^* \in \Pi(x_0)$ y satisface

$$v^*(x_t^*) = F(x_t^*, x_{t+1}^*) + \beta v^*(x_{t+1}^*).$$

Luego, por inducción

$$v^*(x_0) = u_n(\tilde{x}^*) + \beta^{n+1}v^*(x_{n+1}^*), \ n = 1, 2...$$

Luego, usando (2), $v^*(x_0) \leq u(\tilde{x}^*)$.

Observación

El ejemplo anterior puede ajustarse acotando inferiormente la riqueza x_t de forma que el individuo no puede endeudarse hasta el punto de quedarse sin dinero.

Retornos acotados

Retornos acotados

Supongamos que |F| < M para cierto M > 0. Nuestro objetivo es ahora resolver la ecuación funcional, obtener V que satisfaga (1). En efecto, usando los Teoremas (3) y (4),el conjunto maximizador $\{x_t^*\}$ del problema \mathcal{P}^{∞} es generado por

$$G^*(x) = \{ y \in \Gamma(x) : v^*(x) = F(x,y) + v^*(y) \}.$$

Punto fijo

Definamos el operador $\mathcal T$ sobre el espacio de funciones continuas y acotadas que van de $\mathcal X$ a $\mathbb R$:

$$(Tf)(x) = \max_{y \in \Gamma(x)} [F(x, y) + \beta f(y)].$$

Así, TV = V. Nuestros objetivos son los siguientes:

- **1** Demostrar que $T: C(X) \rightarrow C(X)$.
- 2 Especificar la naturaleza de C(X).
- Aplicar el Teorema del Punto Fijo de Banach.
- Establecer como obtener V usando el argumento del punto fijo.
- Ejemplo.

Punto fijo

Observación

El operador T está definido sobre el espacio métrico (S, ρ)

$$S = \{f : X \to \mathbb{R} : \text{continua y acotada}\}$$

$$||f|| = \sup_{x \in X} |f(x)|$$

٧

$$\rho(f,g) = ||f - g|| = \sup_{x \in X} ||f(x) - g(x)||.$$

Proposición

El espacio métrico (S, ρ) es completo. Más aún, es un espacio vectorial normado completo.

Prueba.

El hecho que $S=\mathcal{B}(X)$ es un espacio vectorial es por definición. Asimismo, lo es que $||f||=\sup_{x\in X}|f(x)|$ sea una norma. Queda entonces mostrar que es completo. Sea $\{f_n\}$ de Cauchy. Entonces, buscamos probar que existe $f\in S$ de forma que, para cualquier $\varepsilon>0$, existe N_ε de forma que $||f_n-f||\leq \varepsilon$ para todo $n\geq N_\varepsilon$. Primero, la sucesión de números reales $\{f_n(x)\}$ cumple lo siguiente

$$|f_n(x) - f_m(x)| \le \sup_{x \in X} |f_n(x) - f_m(x)| = ||f_n - f_m||.$$

Entonces, como $\mathbb R$ es completo, existe $f:X\to\mathbb R$ tal que $f_n\to f$. Ahora, veamos que $||f_n-f||\to 0$. Dado $\varepsilon>0$, escogemos N_ε tal que $||f_n-f_m||\le \varepsilon/2$. Luego,

$$|f_n(x) - f(x)| \le |f_n(x) - f_m(x)| + |f_m(x) - f(x)|$$

$$\le ||f_n - f_m|| + |f_m(x) - f(x)|$$

$$\le \varepsilon/2 + |f_m(x) - f(x)|.$$

Prueba.

Como $\{f_m(x)\}$ converge a f(x), se escoge separadamente m de forma que $|f_m(x)-f(x)|\leq \varepsilon/2$. Así, $||f_n-f||\leq \varepsilon$, $n\geq N_\varepsilon$. Finalmente, queda probar que f es acotada y continua. El hecho que sea acotada es consecuencia de que $|f(x)|\leq |f_n(x)-f(x)|+|f_n(x)|$, para todo n y $x\in X$. Luego, dado $\varepsilon>0$, buscamos $\delta>0$ tal que

$$|f(x)-f(y)|<\varepsilon, \text{ si } ||x-y||_2<\delta.$$

Escojamos k de forma que $||f-f_k||<\varepsilon/3$. Dado que $f_n\to f$ con la norma del supremo, esto es posible. Así, escogemos $\delta>0$ de forma que

$$||x-y||_2 < \delta \implies |f_k(x)-f_k(y)| < \varepsilon/3.$$

Recordemos que f_k es continua. Por ende,

$$|f(x) - f(y)| \le |f(x) - f_k(x)| + |f_k(x) - f_k(y)| + |f_k(y) - f(y)|$$

$$\le 2||f - f_k|| + |f_k(x) - f_k(y)|$$

$$< \varepsilon.$$

Lema

Sean $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ y $f: X \times Y \to \mathbb{R}$ continua. Si Γ es tal como mencionado previamente, entonces $h(x) = \max_{y \in \Gamma(x)} f(x, y)$ es continua y la correspondencia $G: X \to Y$ definida por

$$G(x) = \{ y \in \Gamma(x) : f(x,y) = h(x) \}$$

es no vacía, a valores compacto y hemicontinua superiormente.

Intuición: fijamos $\varepsilon > 0$, queremos $\delta > 0$ tal que $|h(x) - h(\tilde{x})| < \varepsilon$ si $x \simeq \overline{x}$ $(||x-\widetilde{x}||<\delta)$. Como f es continua y $\Gamma(x)$ también, entonces $\Gamma(x)\simeq\Gamma(\overline{x}),\ y^*\in\Gamma(x)$ y $\overline{y}^* \in \Gamma(\overline{x})$ son tales que $y^* \simeq \overline{y}^*$ y así, como $x \simeq \overline{x}$

$$f(x, \overline{y}^*) \simeq f(\overline{x}, \overline{y}^*).$$

Luego, G(x) es compacta dado que $\Gamma(x)$ lo es y f es continua. Es u.h.c por lo mismo. **Formalicemos**

27 / 38

Definición

 Γ es u.h.c. si para toda sucesión x_n tal que $x_n \to x$ y toda sucesión tal que $y_n \in \Gamma(x_n)$, existe y_{n_k} tal que $y_{n_k} \to y \in \Gamma(x)$.

Definición

 Γ es l.h.c. si dado $x \in X$, $\Gamma(x)$ es no vacía y para todo $y \in \Gamma(x)$ y $x_n \to x$, existe $N \ge 1$ y $\{y_n\}_{n=N}^{\infty}$ tal que $y_n \to y$ y $y_n \in \Gamma(x_n)$ para todo $n \ge N$.

Prueba.

Sea $x \in \Gamma(x)$, no vacía y compacta y $f(x,\cdot)$ continua, entonces, el máximo es alcanzado (T.W.) y G(x), el conjunto de maximizadores, es no vacío. Luego, $G(x) \subset \Gamma(x)$ por lo que es acotada. Sea $y_n \to y$ tal que $y_n \in G(x)$, como $\Gamma(x)$ es compacta $y \in \Gamma(x)$. Luego, $h(x) = f(x,y_n)$ es continua y así f(x,y) = h(x) (pues se maximiza en $y \in \Gamma(x)$). Con lo cual, $y \in G(x)$. Veamos ahora que G es u.h.c. Sea $x_n \to x$ y $y_n \in G(x_n)$. Como Γ es l.h.c., existe $y_{n_k} \to y \in \Gamma(x)$. Sea ahora $z \in \Gamma(x)$, $\exists z_{n_k} \to z$, con $z_{n_k} \in \Gamma(x_{n_k})$, pues Γ es l.h.c.

$$f(x_{n_k}, y_{n_k}) \ge f(x_{n_k}, z_{n_k}) \implies f(x, y) \ge f(x, z) \implies y \in G(x).$$

La continuidad de h se obtiene por argumentos similares (ver Lucas, Stockey y Prescott p. 62).

Proposición

 $T: S \to S$. Es decir, $T(f) \in S$.

Prueba.

Aplicando el Lema (2),

$$h(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta f(y) \}.$$

es continua. Luego, como F y f son acotadas, h(x) también.

Blackwell

Proposición

Condiciones de Blackwell. Sea $X\subset\mathbb{R}^n$ y $\mathcal{B}(X)$ el espacio de las funciones acotadas continuas $f:X\to\mathbb{R}$ con la norma del supremo. T es una contracción con módulo β si

- **②** Si $f, g \in \mathcal{B}(X)$ y $f(x) \leq g(x)$ para todo $x \in X$, entonces $T(f)(x) \leq T(g)(x)$ para todo $x \in X$.
- ② Existe $\beta \in (0,1)$ tal que $T(f+a)(x) \leq T(f)(x) + \beta a$ para todo $f \in \mathcal{B}(X)$, $a \geq 0$, $x \in X$.

Blackwell

Prueba.

Si $f(x) \le g(x)$, $\forall x \in X$, denotamos $f \le g$. Luego,

$$f \le g + ||f - g||.$$

Debido a las premisas,

$$T(f) \leq T(g + ||f - g||) \leq T(g) + \beta||f - g||.$$

En caso $g \le f$, $T(g) \le T(f) + \beta ||f - g||$. Así,

$$||T(f)-T(g)|| \leq \beta ||f-g||.$$

Las condiciones de Blackwell se satisfacen en el caso de

$$T(f)(x) = \sup_{y \in \Gamma(x)} \{F(x,y) + \beta f(y)\}.$$

En efecto, si f < g

$$F(x,y) + \beta f(y) \le F(x,y) + \beta g(y)$$

$$\sup_{y \in \Gamma(x)} \{ F(x,y) + \beta f(y) \} \sup_{y \in \Gamma(x)} \{ \le F(x,y) + \beta g(y) \}$$

$$T(f)(x) \le T(g)(x).$$

$$T(f+a)(x) = \sup_{y \in \Gamma(x)} \{F(x,y) + \beta[f(y) + a]\}$$
$$= T(f)(x) + \beta a.$$

33 / 38

Proposición

Si (S, ρ) es un espacio métrico completo y $T: S \to S$ es una contracción con módulo β , entonces

- ullet T posee un único punto fijo V en S.
- ② Para cualquier $V_0 \in S$, $\rho(T^nV_0, V) \leq \beta^n \rho(V_0, V)$, n = 0, 1, 2...

Prueba.

(a) Sea
$$V_n = T^n V_0$$
. Como T es una contracción de módulo $\beta > 0$

$$\rho(V_{2}, V_{1}) = \rho(TV_{1}, TV_{0}) \leq \beta \rho(V_{1}, V_{0})$$

$$\rho(V_{3}, V_{2}) = \rho(TV_{2}, TV_{1})\beta \rho(V_{2}, V_{1}) \leq \beta^{2} \rho(V_{1}, V_{0})$$

$$\vdots$$

$$\rho(V_{n+1}, V_n) \leq \beta^n \rho(V_1, V_0).$$

Así, para cualquier m > n, usando la desigualdad triangular,

Prueba.

$$\rho(V_m, V_n) \leq \sum_{k=n}^{m-1} \rho(V_{k+1}, V_k)$$

$$\leq \left[\sum_{k=n}^{m-1} \beta^k\right] \rho(V_1, V_0)$$

$$\leq \frac{\beta^n}{1-\beta} \rho(V_1, V_0).$$

Así, $\{V_n\}$ es una sucesión de Cauchy. Como S es completo, $V_n o V\in S$. Queda probar que V es un punto fijo. Para cualquier n > 0

$$\rho(TV, V) \le \rho(TV, T^{n}V_{0}) + \rho(T^{n}V_{0}, V)
\le \beta \rho(V, T^{n-1}V_{0}) + \rho(T^{n}V_{0}, V).$$

Sin embargo, $V_n, V_{n-1} \rightarrow V$. Así.

$$\lim_{n\to\infty} \rho(V, T^{n-1}V_0) + \rho(T^nV_0, V) = 0.$$

Prueba.

Por lo que, $\rho(TV, V) < \varepsilon$ para todo $\varepsilon > 0$. Por el ε -principio, $\rho(TV, V) = 0$. Finalmente, el punto fijo es único dado que

$$\rho(V,V') = \rho(TV,TV') \le \beta \rho(V,V') \implies \rho(V,V') = 0.$$

(b) Como
$$T^n = T[T^{n-1}]$$

$$\rho(T^n V_0, V) = \rho(T[T^{n-1}]V_0, TV)$$

$$\leq \beta \rho(T^{n-1}V_0, V)$$

$$\leq \beta^n \rho(V_0, V).$$

Nos queda, vía ejemplos, aplicar el argumento del punto fijo y encontrar soluciones a los problemas \mathcal{P}_{∞} . Los procedimientos son muy particulares y no generalizables. Luego, se hará la demostración del método vía la Ecuación de Euler y presentaremos modelos de crecimiento, como el de la acumulación del capital humano y el learning by doing.

Gracias