Pontificia Universidad Católica del Perú Especialidad de Finanzas

27 de octubre de 2024

Tarea Académica 3 FIN 203

Profesor: José Gallardo

Jefes de práctica: Marcelo Gallardo y Karen Montoya

Ejercicio 1. **3 puntos. Duopolio de Bertrand.** Situése en el modelo de duopolio de Bertrand. Suponga que la cantidad demandada por los consumidores de la firma i es $a - p_i$ cuando $p_i < p_j$, 0 si $p_i > p_j$ y $\frac{a - p_i}{2}$ si $p_i = p_j$. Suponga que las firmas no tienen costo fijo y tienen costo marginal constante e igual a c < a. Demuestre que el único equilibrio de Nash consiste en $p_i^* = p_j^* = c$.

Ejercicio 2. **3 puntos. Bienes públicos y mecanismo de Groves.** Considere una economía con I consumidores, cuyas funciones de utilidad son cuasi-lineales $u_i = V_i(x, \theta_i) + t_i$, donde t_i es el ingreso (monetario) del consumidor, x la cantidad de un bien público, $\theta_i \in \Theta_i$ un parámetro comúnmente denominado el tipo del consumidor y V_i el excedente bruto del consumidor que depende de x y su tipo. El costo de producir x es C(x). Suponga que V_i es estrictamente cóncava en x, que C es estrictamente convexa y creciente, que ambas funciones son dos veces diferenciables, y que $\partial^2 V_i/\partial x \partial \theta_i > 0$.

1. Argumente por qué la decisión socialmente eficiente sobre el nivel de producción de *x* resuelve

$$\max_{x} \left\{ \sum_{i=1}^{I} V_i(x, \theta_i) - C(x) \right\}. \tag{1}$$

2. Considere ahora el siguiente *juego de revelación*: se les pregunta a los consumidores, simultáneamente, cuál es su tipo θ_i . Ellos anuncian $\hat{\theta}_i$ y se obtiene $x^*(\hat{\theta}_1, \dots, \hat{\theta}_I)$ resolviendo (1) para la configuración de parámetros $\hat{\theta}_1, \dots, \hat{\theta}_I^{-1}$. Luego, cada consumidor recibe

$$t_i(\hat{\theta}_1,\cdots,\hat{\theta}_I)=\sum_{j\neq i}V_j(x^*(\hat{\theta}_1,\cdots,\hat{\theta}_I),\theta_j)-C(x^*(\hat{\theta}_1,\cdots,\hat{\theta}_I)).$$

¹Tanto $C(\cdot)$ como V_i son de conocimiento público.

- Modele esta situación como un juego estático de información completa. En concreto, determine los jugadores, sus espacios de estrategias y sus funciones de utilidad.
- Demuestre que decir la verdad, es decir, revelar su verdadero tipo $\hat{\theta}_i = \theta_i$, es una estrategia estrictamente dominante para todo i = 1, ..., I.

Ejercicio 3. **Bonus de 1 punto.** Demuestre que el siguiente juego, representado en su forma normal

	L	M	R
U	(1, -2)	(-2, 1)	(0, 0)
M	(-2, 1)	(1, -2)	(0, 0)
D	(0, 0)	(0, 0)	(1, 1)

tiene un único equilibrio de Nash (considere tanto estrategias puras como mixtas).