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Abstract

We extend the optimal transport model with quadratic regularization by incorporat-
ing heterogeneous congestion costs, motivated by frictions in sectors like healthcare and
education. We first study the continuous problem over Rn, deriving Lagrangian-type
first-order conditions. However, we show that due to the nonlinearity and heterogeneity of
congestion, standard smooth and monotone comparative statics do not apply—a negative
result we explicitly characterize. We then analyze the integer version of the problem and,
under mild conditions, prove a characterization theorem that yields closed-form solutions.
Despite its theoretical complexity, the model is numerically tractable. We present computa-
tional examples illustrating its applicability to real-world matching problems under congestion.
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1 Introduction

Matching theory in economics studies how to pair agents from two sides of a market according
to preferences and feasibility constraints (Hylland and Zeckhauser, 1979; Kelso and Crawford,
1982; Roth, 1982; Abdulkadiroğlu and Sönmez, 2003; Hatfield and Milgrom, 2005; Echenique and
Yenmez, 2015; Echenique et al., 2023). While classical models focus on finite sets and algorithmic
solutions, recent advances have reframed matching problems within an optimization framework
using optimal transport (OT) theory. Originally developed by Monge and later formalized
by Kantorovich, OT provides a powerful mathematical toolkit for optimizing matchings over
continuous distributions and general metric spaces (Villani, 2009; Ekeland, 2010; Ambrosio et al.,
2021). In economics, this optimization-based perspective has been applied to matching problems
in migration, marriage, and labor markets (Dupuy and Galichon, 2014; Carlier et al., 2020;
Dupuy and Galichon, 2022; Echenique et al., 2024).

In recent years, the classical optimal transport problem has been applied to areas such as game
theory (Blanchet and Carlier, 2016), Bayesian persuasion (Arieli et al., 2022), and has also been
extended through regularization techniques (Galichon, 2016; Lorenz et al., 2021; Clason et al.,
2020). These extensions aim to improve computational tractability and incorporate additional
structural properties. Entropic regularization, for instance, introduces an entropy term that
smooths the solution and enables efficient algorithms like Sinkhorn’s. Quadratic regularization, on
the other hand, penalizes large transport flows, capturing effects such as congestion or increasing
marginal costs. Both approaches yield numerically stable formulations with exploitable convex
structure (Peyré and Cuturi, 2019).

In this work, we develop a variant of the quadratically regularized optimal transport model with
heterogeneous quadratic regularization in the discrete setting. Our model captures heterogeneous
congestion costs and provides new insights relative to the existing literature. We begin by
analyzing the continuous formulation over RN , deriving first-order conditions using a Lagrangian
approach and investigating the potential for smooth and monotone comparative statics. We
then turn to the discrete setting over ZN , where we introduce a characterization theorem that
identifies optimal solutions under mild conditions. Finally, we illustrate the practical relevance of
our framework through examples involving inefficiencies in educational and healthcare matching
markets in Peru.

The remainder of the paper is organized as follows. Section 2 introduces the notation and
reviews relevant models from the literature. Section 3 presents our model and examine its
mathematical properties, with special attention to the structure of interior and corner solutions.
Section 4 applies the model to real-world matching problems under congestion.

Peru is one of the most traffic-congested countries in the world, leading to significant economic
losses due to inefficient transportation policies and inadequate infrastructure (Martinez, 2024).
Additionally, the country faces a fragile and underfunded healthcare system, as evidenced by the
devastating impact of COVID-19, making Peru the most affected country globally in terms of
mortality rates (Médicos Sin Fronteras, 2021). The education sector also reflects deep structural
issues, with many lacking access to schooling, and even those who do often receive substandard
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education, as Peru consistently ranks among the lowest in international assessments such as
PISA (Organisation for Economic Co-operation and Development, 2024). Overcrowding, system
saturation, and congestion potentially explain this. Our model takes this into account. Therefore,
our study is highly relevant as it provides new insights into this critical scenario, shedding light
on real issues and potential policy solutions.

2 Notation and preliminaries

We denote by X = {x1, · · · , xn} and Y = {y1, · · · , ym} two sets to be matched, for instance:
students and schools, patients and hospitals, workers and firms, etc. We denote by ZN

+ the set of
positive integers in the N -dimensional real vector space RN . The notation Mm×n represents the
set of matrices with m rows and n columns. Each xi may represent a group containing one or
more individuals, such as groups of students. We denote by µi > 0 the number of individuals in
these groups. Similarly, νj > 0 denotes the capacity of yj . For instance, it may represent the
number of available spots in a school, hospital beds, among others. We also denote I = {1, · · · , n}
and J = {1, · · · ,m}.

The classical discrete transport model assumes that the marginal cost of matching an individual
from xi to yj is constant and equal to cij . This parameter depends on group preferences, distances,
and other factors. Therefore, from the perspective of a central planner, the goal is to solve:

PO : min
π∈Π(µ,ν)

n∑
i=1

m∑
j=1

cijπij , (1)

where

Π(µ, ν) =

πij ≥ 0 :
m∑

j=1
πij = µi ∀ i ∈ I,

n∑
i=1

πij = νj ∀ j ∈ J

 . (2)

Note that πij represents the number of individuals matched from i to j and that constraints (2)
ensure that all individuals (students, patients, etc.) are assigned, and that all entities (schools,
hospitals, etc.) fill their available capacity1. A solution to (1) is known as optimal matching or
optimal transport plan. It will be denoted by π∗. To solve PO, linear programming techniques
such as the simplex method are typically employed.

Problem (1) has been extensively studied and extended. Among these extensions is the
entropic regularization model (Carlier et al., 2020; Peyré and Cuturi, 2019)

PE : min
π∈Π(µ,ν)

n∑
i=1

m∑
j=1

cijπij + α
n∑

i=1

m∑
j=1

πij ln(πij)
︸ ︷︷ ︸

E(π)

,

with α > 0. E(π) is continuously extended at πij = 0 using that limx↓0 x ln x. Another more
1This may not seem entirely accurate in the context of underdeveloped countries, like Peru. However, in certain

spaces or problems, the assumption may be reasonable.
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recent extension is the quadratic regularization model (Nutz, 2024; Lorenz et al., 2021):

PQ : min
π∈Π(µ,ν)

n∑
i=1

m∑
j=1

cijπij + ε

2

n∑
i=1

m∑
j=1

π2
ij ,

with ε > 0. These formulations allow for a more uniform distribution of πij , ensure the uniqueness
of a solution, and are computationally more efficient (Merigot and Thibert, 2020).

Before introducing our model, it is important to discuss the existence of solutions to PO,PE

and PQ. The first key observation is that, given the economic context, solutions are expected to
belong to Znm

+ . However, as stated, the optimization problems above do not inherently enforce
that the solution lies in Znm

+ . Moreover, the solution over the lattice Z+nm might differ from
that obtained by optimizing over R+nm.

If the problem is solved in Znm
+ , a combinatorial argument ensures the existence of a solution:

Proposition 2.1 guarantees that there exists a finite number of matchings,and thus, there exists a
minimum of the objective function evaluated over such set of matchings.

Proposition 2.1. In an integer setting, the number of matchings is at most m
∑n

i=1 µi .

Proof. The number of ways to assign all µi individuals from group i to entities is given by
solutions to:

πi1 + · · · + πim = µi, 0 ≤ πij ≤ νj ∀ j = 1, · · · ,m. (3)

Disregarding the upper bounds νj , this reduces to a stars and bars problem (Levin, 2015). The
upper bound for the number of solutions to (3) is

(µi+m−1
m−1

)
. Applying the multiplication principle,

the total number of matchings satisfies:

n∏
i=1

(
µi +m− 1
m− 1

)
=

n∏
i=1

µi∏
j=1

j +m− 1
j

≤
n∏

i=1

µi∏
j=1

m = m
∑n

i=1 µi . ■

The issue, as indicated, is that a priori there is no guarantee that feasible matchings belong to
Znm

+ . It turns out that in the discrete linear case PO, we have πij ∈ Z+. However, in the case of
optimization problems with regularization, this is no longer necessarily true (see for instance (13)).
Nevertheless, the existence of a solution follows quickly from Weierstrass’ Theorem (Proposition
2.2).

Proposition 2.2. Given µ = (µ1, ..., µn)T ∈ Rn
++ and ν = (ν1, ..., νm)T ∈ Rm

++,2 the problems
PO, PE , and PQ always admit a solution π∗ ∈ Rnm

+ .

Proof. In each case, the objective function is continuous as it is linear. The constraint set Π(µ, ν)
is compact in Rnm since it is the intersection of closed sets and bounded within [0,∑n

i=1 µi]nm. ■

The issue with the solution lying in Rnm
+ instead of the integers is similar to the problem

encountered in utility maximization: it lacks economic meaning to consume, for instance, 1.5 cars
or

√
2 phones. However, as we will discuss in detail later, the convex and quadratic structure

allows us to obtain good approximations via optimization in the real domain.
2While µi and νj often take values in Z++, the result holds for any strictly positive real values.
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The basic linear model, as well as the entropic and quadratic regularization problems, have
been extensively studied in the literature (Dupuy and Galichon, 2014; Carlier et al., 2020;
Lorenz et al., 2021; González-Sanz and Nutz, 2024; Wiesel and Xu, 2024; Nutz, 2024). Recent
state-of-the-art work focuses on homogeneous quadratic regularization, continuous distributions,
and issues such as sparsity and algorithmic convergence. As a result, these models typically rely
on approximate solutions in the continuous setting (see Appendix A, and the integer case is not
analyzed. In contrast, our work provides new theoretical insights by addressing a more flexible
variant of the quadratic problem in both the real and integer settings.

We now move on to our heterogeneous quadratic costs model, which, to the best of our
knowledge, along with our results, are novel contributions to the literature.

3 The model and structural properties

Traffic congestion and institutional overload are crucial factors affecting the allocation of
individuals to entities such as schools and hospitals. When too many individuals are matched
to the same entity, congestion costs escalate, leading to inefficiencies in both physical and
bureaucratic dimensions. This phenomenon is observed in various settings:

• Traffic congestion: The simultaneous assignment of many students to the same school in
urban areas can increase travel times, overload public transport, and generate bottlenecks
in key traffic zones. The same happens with patients and hospitals (Alba-Vivar, 2025).

• Medical centers overload: Large patient inflows can overwhelm hospital resources,
creating long waiting times, administrative bottlenecks, and inefficient service delivery
(EsSalud, 2025a,b).

• Bureaucratic congestion: Excess demand for certain institutions may slow down
processing times, affecting school admissions, hospital triage, and public service allocation
due to outdated systems and inefficient workflows.

To model this phenomenon, we consider a strictly convex cost function with respect to the
number of matched individuals C(π; θ), where θ is a vector of parameters. The strict convexity
captures the increasing marginal costs associated with congestion. We define the cost function
C(π; θ) as a separable and continuous function:

C(π; θ) =
n∑

i=1

m∑
j=1

ϕij(πij ; θij), (4)

where ϕij is structurally homogeneous3. The central planner’s problem then becomes:

min
π∈Π(µ,ν)

n∑
i=1

m∑
j=1

ϕ(πij ; θij), (5)

3Since the function ϕij does not change structurally across (i, j) pairs; whether logarithmic, exponential, or
polynomial, we assume ϕij = ϕ.
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where Π(µ, ν) is defined as in (2). Given that congestion leads to increasing costs, ϕ should
be strictly increasing and strictly convex, transforming the problem into a convex optimization
problem with linear constraints. To carry out a quantitative analysis, we assume a quadratic
cost function:

ϕ(πij ; θij) = dij + cijπij + aijπ
2
ij . (6)

Thus, the problem becomes:

P1 : min
π∈Π(µ,ν)

n∑
i=1

m∑
j=1

dij + cijπij + aijπ
2
ij . (7)

In here, the parameters have clear economic interpretations:

• dij represents fixed costs associated with each matching (e.g., baseline administrative or
physical distance).

• cij > 0 corresponds to constant marginal costs, capturing individual and pair characteristics.

• aij > 0 introduces heterogenous congestion effects, ensuring increasing marginal costs as
πij grows.

Although the Linear Independence Constraint Qualification (LICQ) condition may fail for
solutions where non-negativity constraints are not binding, the convexity of the objective function
and the linearity of constraints allow us to apply the Karush-Kuhn-Tucker (KKT) conditions,
see Boyd (2004).

The Lagrangian function associated with (5) is given by:

L =
∑

1≤i≤n
1≤j≤m

ϕ(πij ; θij) +
n∑

i=1
ξi

µi −
m∑

j=1
πij

+
m∑

j=1
λj

(
νj −

n∑
i=1

πij

)
−

∑
1≤i≤n
1≤j≤m

γijπij . (8)

The KKT first-order conditions are:

∂L (π∗, ξ∗, λ∗, γ∗; θ)
∂πij

=
∂ϕ(π∗

ij ; θij)
∂πij

− λ∗
j − ξ∗

i − γ∗
ij = 0, ∀ (i, j) ∈ I × J

−π∗
ij ≤ 0, ∀ (i, j) ∈ I × J

m∑
j=1

π∗
ij − µi = 0, ∀ i ∈ I

n∑
i=1

π∗
ij − νj = 0, ∀ j ∈ J

γ∗
ijπ

∗
ij = 0, ∀ (i, j) ∈ I × J.

Hence, for the quadratic specification (6),

π∗
ij =

ξ∗
i + λ∗

j + γ∗
ij − cij

2aij
. (9)
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Equation (9) is similar to the expression found in Lorenz et al. (2021), which studies our problem
in the homogeneous case, i.e., aij = γ for all (i, j) ∈ I × J . In that article, the optimal
solution π∗

ij is given by the maximum between (ξi + λj − cij)/γ and zero, effectively removing
the parameter γij from the equation. Although this formulation involves non-differentiability
due to the max operator, the authors numerically compute the solution using several methods:
the nonlinear Gauss-Seidel method, direct search, the semismooth Newton method, and the
regularized semismooth Newton method. Our approach, however, differs significantly from Lorenz
et al. (2021), as our main theoretical result is established in the discrete integer setting.

We now analyze the structural properties of problem 7. The first observation is that, since
the objective function is strictly convex, continuous, and the constraint set is convex, there is
a unique solution. Now, if we consider Znm

+ ∩ Π(µ, ν) as the opportunity set, there exists a
finite number of points where the function can be evaluated, ensuring the existence of a solution.
However, uniqueness is not guaranteed. For example, minimizing (x− 3/2)2 over R+ yields the
unique solution 3/2, but in Z+, there are two optimal solutions, x∗ = 1 and x∗ = 2. Moreover,
evaluating all possible options is computationally expensive.

We now focus on the characterization and properties of interior solutions, i.e., where π∗
ij > 0

for all i and j. We start studying the problem in Rnm
+ and then we move on to the integer setting.

3.1 Structural properties in Rnm
+

Proposition 3.1. With respect to P1, whenever γ∗
ij = 0 for all (i, j) ∈ I×J , where I = {1, · · · , n},

J = {1, · · · ,m}, the linear system obtained from (9), with respect to (ξ∗, λ∗), leads to a singular
n+m linear system.

Proof. Since γ∗
ij = 0 for all (i, j) ∈ I × J , first order conditions lead to

m∑
j=1

π∗
ij =

m∑
j=1

ξ∗
i

2aij
+

m∑
j=1

λ∗
j

2aij
−

m∑
j=1

cij

2aij
= µi, ∀ i ∈ I (10)

n∑
i=1

π∗
ij =

n∑
i=1

ξ∗
i

2aij
+

n∑
i=1

λ∗
j

2aij
−

n∑
i=1

cij

2aij
= νj , ∀ j ∈ J. (11)

By setting x =
[
ξ∗

1 · · · ξ∗
n λ∗

1 · · · λ∗
m

]T
∈ Rn+m, the linear equalities (10) and (11) on ξ∗

i

and λ∗
j are described by the linear system (Λ + T )x = b, where

Λ = Diag

 m∑
j=1

1
2a1j

, . . . ,
m∑

j=1

1
2anj

,
n∑

i=1

1
2ai1

, . . . ,
n∑

i=1

1
2aim

 ∈ Rn+m,n+m.

Υ =
[

1
2aij

]
1≤i≤n
1≤j≤m

∈ Rn,m and T =
[

0 Υ
ΥT 0

]
∈ Rn+m,n+m,

b =

µ1 +
m∑

j=1

c1j

2a1j
, . . . , µn +

m∑
j=1

cnj

2anj
, ν1 +

n∑
i=1

ci1
2ai1

, . . . , νm +
n∑

i=1

cim

2aim

T

∈ Rn+m.



3 The model and structural properties 8

Let R = Λ + T . If Rk denotes the k−th row of R, we note that R1 = ∑n+m
k=n+1Rk −

∑n
k=2Rk.

Hence, Det(R) = 0, and the claim follows. ■

Proposition 3.1 is crucial as it highlights that, even in the case of interior solutions, there is
no systematic method for obtaining an analytical solution through the direct resolution of the
linear system.

As usual in economics, we are interested in perform monotone or smooth comparative statics.
With respect to the former (see Milgrom and Shannon (1994)), it can’t be performed since
S = Π(µ, ν) is not a sub-lattice of X = Rnm

+ . Indeed, given π1, π2 ∈ S, in general, π1 ∧ π2 and
π1 ∨ π2 do not belong to S. With respect to the latter, Proposition 3.2 explains why smooth
comparative statics cannot be accomplished.

Proposition 3.2. With respect to (8), considering quadratic costs4, we have that

Det(Jπ,(ξ,λ)L (π∗, ξ∗, λ∗, θ)) = 0.

Proof. First, let π = (π11, . . . , π1m, · · · , πn1, . . . , πnm)T . Then, we define

D = Diag(a11, . . . , a1m, · · · , an1, . . . , anm) ∈ Rnm,nm
++

and B = [bkℓ] ∈ Rn+m,n+m, where

bkℓ =


1 if k ≤ n and (k − 1)m < ℓ ≤ km,

1 if n < k ≤ n+m and ℓ ≡ k − n (mod m),

0 otherwise.

Matrix B never has full rank. Indeed, B1 = ∑n+m
k=n+1Bk −

∑m
k=2Bk, where Bk is row k of B.

Thus, since

Jπ,(ξ,λ)L (π∗, ξ∗, λ∗, θ) =
[
D −BT

−B 0

]
,

following Gentle (2017), Det(Jπ,(ξ,λ)L (π∗, ξ∗, λ∗, θ)) = Det(D)Det(0 −BD−1BT ) = 0. ■

Although we cannot apply smooth comparative statics, the conditions of the Envelope
Theorem are satisfied for π∗ in the interior of Π. Therefore, by defining V = V (π∗) =∑n

i=1
∑m

j=1 ϕij(π∗
ij ; θij), we can conclude that ∂V/∂cij = π∗

ij > 0 and ∂V/∂aij = π∗2
ij > 0,

which is expected, as the cost of the optimal transport plan only increases if the coefficients
associated with preference costs and congestion costs rise.

Note that, in general, obtaining the optimal matching π∗ from (9), is quite complicated. Even
if we assume an interior solution, which would simplify the equations since γ∗

ij = 0 automatically,
we still cannot solve the linear system systematically. Note also that R not being invertible does
not imply that the system has no solution. It only means that, if a solution (ξ∗, λ∗) exists, it is
either not unique, or there is γ∗

ij ̸= 0. What is unique is π∗ since the objective function is strictly
4Following de la Fuente (2000) notation. Here L = (∇πL , ∇θL ).
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convex. Hence, even if we have several (ξ∗, λ∗), at the end, we obtain a unique π∗. The non
uniqueness of (ξ∗, λ∗) originates from the fact that the LICQ does not hold for interior solutions.

However, from a computational perspective, our model can always be solved using standard
quadratic convex optimization methods. On the other hand, when n = m, optimizing over Znm

+ ,
we can obtain an explicit solution for our model under mild assumptions. The result we present
in that line in the following section is quite strong, as it allows us to obtain the explicit solution
in the integer case.

3.2 Structural properties in Znm
+

In the case of the linear model, solutions are always corner solutions (Tardella, 2010). On the
other hand, in the case of entropic regularization, the solution is always interior (Nenna, 2020).
The following examples show that both interior and corner solutions to P1 could exist. Note
that in P1, the value of dij is arbitrary, as it does not affect the solution.

Example 3.3. In this example, we show a case where the solution is interior. Consider

a = [aij ] =
[
2 2
2 2

]
, c = [cij ] =

[
24 48
16 24

]
, d = [dij ] ∈ M2×2, µ = (20, 20), and ν = (12, 28).

Consequently, running QuadraticOptimization in Mathematica, we obtain π∗ = (7, 13, 5, 15),
an interior solution.

Example 3.4. To illustrate a case where the solution is a corner solution, consider the following
values:

a =
[
200 2
2 200

]
, c =

[
200 2
2 200

]
, d = [dij ] ∈ M2×2, µ = (10, 10), and ν = (10, 10).

In this scenario, the optimal solution, obtained once again running QuadraticOptimization in
Mathematica, is π∗ = (0, 10, 10, 0), a corner solution.

Now, consider adding restrictions to the parameter vector and the sizes of the sets to explicitly
obtain a specific corner solutions.

Assumption 1. Let M be a positive integer strictly greater than 1. Assume that n = m = M

and µi = νj for all 1 ≤ i, j ≤ M .

Assumption 1 ensures that each school or medical center reaches full capacity with individuals
from the same group. For instance, a central planner who assigns one school per neighborhood,
with enough capacity to serve the students in the surrounding areas.

Assumption 2. For each 1 ≤ i ≤ n, suppose there exists 1 ≤ ζi ≤ m such that ci ζi
< ci j for all

1 ≤ j ≤ m with j ̸= ζi. Furthermore, assume that ζi ̸= ζj for all 1 ≤ i, j ≤ m with i ̸= j.

Assumption 2 imposes that each group i ∈ I has a unique top choice j ∈ J based on
preferences, and this top choice differs across groups. For instance, best students from the top
high school choose the best college/university.
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Assumption 3. Let c̃i = min
1≤j≤m

j ̸=ζi

{cij} satisfy c̃i > ci ζi
+ ai ζi

µ2
i (1 − 1/m) for 1 ≤ i ≤ n.

Assumption 3 tells us that preferences must be such that the top choice only based on cij

is at least ai ζi
µ2

i (1 − 1/m) better than the other ones. By combining Assumptions 1, 2 and 3
we show that the solution to P1, in the integer setting, is given by (12). The notation aiζi

is
analogous to ciζi

from Assumption 2.

Theorem 3.5. Under Assumptions 1, 2 and 3, the optimal matching for P1 in the integer setting
is given by

π∗ = [π∗
ij ] =

µi if j = ζi,

0 otherwise.
(12)

Proof. Let π be an arbitrary matching different from π∗. Then,

C(π; θ) =
n∑

i=1

m∑
j=1

dij + cijπij + aijπ
2
ij

≥
n∑

i=1

m∑
j=1

dij +
n∑

i=1

 m∑
j=1

cijπij + ai ζi

m∑
j=1

π2
ij

 .
Now, consider i such that πi ζi

< µi. Due to the integer nature of π, πi ζi
≤ µi − 1. Hence

m∑
j=1

cijπij = ci ζi
πi ζi

+
∑
j ̸=ζi

cijπij

≥ ci ζi
πi ζi

+ c̃i(µi − πi ζi
)

= c̃iµi − πi ζi
(c̃i − ci ζi

)
≥ c̃iµi − (µi − 1)(c̃i − ci ζi

)
= µici ζi

+ c̃i − ci ζi
.

On the other hand, consider the function f : Rm−1 → R defined by

f(x1, . . . , xm−1) = x2
1 + · · · + x2

m−1 + (µi − x1 − · · · − xm−1)2.

Note that the set x∗
j = µi/m minimizes f . As a consequence,

m∑
j=1

π2
ij = f(πi1, . . . , πi m−1) ≥

m∑
j=1

(
µi

m

)2
= µ2

i

m
.

Combining these results, we have

C(π; θ) ≥
n∑

i=1

m∑
j=1

dij +
n∑

i=1
µici ζi

+ c̃i − ci ζi
+ ai ζi

(
µ2

i

L

)
> C(π∗; θ). ■

Although the assumptions required to prove Theorem 3.5 may appear strong, they align with
the following situation: Assumption 1 states that there is an equal number of groups on each
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side, as in the marriage market, membership allocations, specialized schools, and centralized
assignment mechanisms. Assumption 2 then states that each group has a clear affinity with
another, with no overlaps. This condition is more restrictive than what typically occurs in the
marriage market or in general settings, but it applies to the examples we will discuss in the
Peruvian context. This framework holds when preferences are aligned (Echenique et al., 2024).
Finally, Assumption 3 is the strongest and most specific, yet it is necessary to establish the result.
The intuition is that, for transportation costs not to disrupt the matching equilibrium, the given
relationship must hold, ensuring that the cost ciζi

remains sufficiently low.

Example 3.6. In this example, we illustrate numerically Theorem 3.5. Consider n = m = 4,
µi = νj = 20,

d =


88 88 100 91
19 42 37 69
81 87 9 50
66 18 77 91

 , c =


989 24 975 941
673 612 684 9
20 352 387 380
675 687 44 697

 , and a =


9 3 8 9
6 8 3 2
1 7 8 3
9 5 2 6

 .

The optimal matching, obtained using QuadraticOptimization, is

π∗ =


0 20 0 0
0 0 0 20
20 0 0 0
0 0 20 0

 ,

Hence, the result is in accordance with Theorem 3.5.

Examples 3.3 and 3.4 demonstrate that the solution to P1 can be either interior or a corner
solution, unlike the classical linear model. However, under the assumptions of Theorem 3.5, the
solution is always a corner solution, as illustrated in Example 3.6.

The discussion regarding our model optimizing over the Euclidean space rather than the lattice
Znm

+ parallels the classical optimization models in microeconomics, where goods are assumed
to be infinitely divisible. However, given the structure of the objective function—comprising a
sum of convex functions and a strictly convex quadratic term—we can leverage results from the
literature developed in (Hochbaum and Shanthikumar, 1990). In particular, the solution in the
lattice is sufficiently close to the solution in Rnm

+ , depending on the coefficients of the matrix
[aij ]:

∥πZ − πR∥ ≤ C(Θ)f({λı}ı),

where λı are the eigenvalues of the Hessian of the objective function, Θ represents the model
parameters, and C(Θ) is a constant that depends on the parameters. For the theory of integer
programming and computational issues regarding it, which yields another full and extensive
analysis, see for instance Park and Boyd (2017); Hladík et al. (2019); Pia (2024).
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3.3 Analysis for n = m = 2

Having studied the specific cases where the solution is either a corner or interior solution,
we now turn to the general case for n = m = 2, disregarding any assumption. The following
calculations were obtained using Mathematica 14.1. By solving (10) and (11), we identified four
parametric solution families that require µ1 + µ2 = ν1 + ν2. Three of these families are discarded
because they correspond to degenerate cases: the first case holds when a12 + a22 = 0, the second
case holds when a11 + a12 + a21 + a22 = 0 and µ2 = (2a12(ν1 + ν2) + 2ν1(a21 + a22) − c11 +
c12 + c21 − c22)/(2a12 + 2a22) and the third case holds when a12 + a22 = 0, a11 + a21 = 0 and
ν1 = (2ν2a22 + c11 − c12 − c21 + c22)/(2a21). These unfeasible conditions leave us with one valid
solution family, given by ξ∗

2 = ξ∗
1 +(2(a11a12 +a12a21 +a11a22 +a21a22)µ2 −2(a11a12 +a11a22)ν1 −

2(a11a12 + a12a21)ν2 + (a12 + a22)(c21 − c11) + (a11 + a21)(c22 − c12))/(a11 + a12 + a21 + a22),
λ∗

1 = (−ξ∗
1a21 − ξ∗

2(a12 +a21 +a22) + 2(a12a21 +a21a22)µ2 − 2a12a21ν2 +a22c21 +a21c22 −a21c12 −
a12c21)/(a12 +a22) and λ∗

2 = (−ξ∗
1a22 −ξ∗

2a12 −2a12a22ν2 −a22c12 −a12c22)/(a12 +a22) where ξ∗
1 is

free. By plugging these equalities into (9), we obtain the optimal matching when all the resulting
expressions are strictly greater than zero. A detailed analysis to guarantee that π∗

ij > 0 was
performed by reducing inequalities programmatically, but the numerous inequalities generated
are omitted here. This analysis establishes a well-defined parameter space where the solution
remains interior.

Given the specific cases analyzed above, it becomes evident that there is little hope of
determining analytically whether solutions are interior or corner as n and m increase beyond 2.
While the examples for n = m = 2 allowed us to identify some conditions under which solutions
are either interior or corner, as the dimension of the problem grows, these conditions become
increasingly complex and indeterminate.

The case n = m becomes particularly relevant when considering the healthcare sector, where
certain hospital networks are designated for specific types of diseases or patients. We explore
this in detail in Section 4.

Although solving P1 analytically in a systematic way is a rather complex challenge, one can
perform numerical quadratic convex optimization to approach the solution due to the structure
of the objective function.

4 Applications

The formulation in problem P1 is particularly relevant in contexts where congestion costs
significantly affect the allocation of resources. Unlike models with linear costs, the quadratic cost
structure accounts for congestion effects indirectly by making overburdened facilities increasingly
costly. Heterogeneity is important since it allows for different congestion costs according to
pairs (i, j). This feature is crucial in understanding inefficiencies in the Peruvian healthcare and
education sectors, where access is heavily determined by proximity to schools and bureaucratic
efficiency in medical centers.
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4.1 Healthcare: The Impact of Bureaucratic and Geographic Congestion

Congestion severely affects healthcare access in Peru, manifesting in both physical and systemic
dimensions. Lima’s extreme traffic congestion, ranked among the worst globally, significantly
delays patient travel times, limiting access to hospitals with available capacity. The World Bank
estimates that traffic congestion alone costs Peru 1.8% of its GDP annually, a pattern observed
in other highly congested cities such as Mumbai, São Paulo, and Jakarta (Kikuchi and Hayashi,
2020).

Beyond geographic constraints and traffic, systemic congestion due to resource limitations
and administrative inefficiencies further deteriorates healthcare delivery. Overburdened medical
personnel face extreme patient inflows, contributing to burnout and operational slowdowns. With
only 4 doctors per 10,000 inhabitants—far below the World Health Organization -recommended
threshold of 43—Peru’s medical workforce is severely overstretched (Infobae Médicos, 2024).
Hospital capacity is equally insufficient, with only 1.6 beds per 1,000 people, significantly lagging
behind regional standards (World Bank, 2023). Inefficient patient referral processes, bureaucratic
hurdles, and insurance-based care restrictions further aggravate congestion, increasing waiting
times and deferral rates (Huerta-Rosario et al., 2019; EsSalud, 2025a,b).

This congestion can be effectively captured by a quadratic formulation in our model, specifically
through the term ∑

i,j aijπ
2
ij , which accounts for the saturation effects when too many individuals

seek care at the same facility. As patient demand grows non-linearly within a given hospital or
medical subsystem, service rates deteriorate, amplifying delays. This formulation reflects not
only physical crowding but also bureaucratic congestion, where administrative overload further
reduces system efficiency.

At all times, we adopt the perspective of a central planner who has individuals, their
preferences, cost information, and seeks the optimal assignment. We are not asserting or
assuming that, in the current reality, the market adjusts to our model; rather, this is a normative
economic approach rather than a positive one.

Example 4.1. In this example, we aim to represent the healthcare sector scenario, where three
groups of patients are theoretically assigned to a specific type of medical center: SIS (Sistema
Integral de Salud), EsSalud, and EPS (Entidades Prestadoras de Salud). The first group consists
of poor and informal individuals, the second group comprises formal workers with severe diseases,
and the third group consists of formal workers with standard diseases. We do not further cluster
by economic sector to keep the example simple. Additionally, we exclude wealthy informal
individuals (potential criminals) or millionaires with complex diseases.

The coefficients of the matrix c reflect preferences based on costs unrelated to congestion,
such as bureaucratic barriers, compatibility, etc. The choice of parameters is consistent with this
approach, assigning a cost of 1 for the preferred medical center and 10 for the other two. Group
i = 1 corresponds to informal individuals, j = 1 to SIS, i = 2 corresponds to formal workers
with complex diseases, j = 2 to EsSalud, and finally, i = 3 corresponds to formal workers with
standard diseases, with j = 3 representing EPS. In particular, the parameters used, reflecting
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this situations, are:

a =


2 1 2
1 2 2
2 1 2

 , c =


1 10 10
10 1 10
10 10 1

 , d ∈ M3×3 and µ = ν =


20
20
20

 .
The matrix a has been chosen to introduce more friction due to congestion in the optimal linear
match. Then, the optimal solution π∗ under this parameter configuration is:

π∗ =


6.80743 7.19595 5.99662
8.63514 5.60811 5.75676
4.55743 7.19595 8.24662


This solution highlights the deviations from a strict one-to-one patient allocation, as the

quadratic cost terms allow for cross-assignments that would not occur in a purely linear model.
For comparison, when a = 0, meaning there are no quadratic costs, the optimal assignment is:

π∗ =


20 0 0
0 20 0
0 0 20

 .
Here, patients are strictly assigned to their designated5 medical system, as expected in the
absence of congestion effects, but in contrast with the Peruvian reality where mismatching occurs,
Anaya-Montes and Gravelle (2024).

Example 4.2. In this example, we analyze a scenario where the linear costs are such that all
groups i would prefer to match with j = 3. However, due to congestion, only those in i = 3
actually are matched. Think of an exclusive medical center that is far from rural areas or poor
districts. The parameters are as follows:

a =


1 1 20
1 1 20
1 1 1

 , c =


1 1 5
1 1 5
1 1 5

 , d ∈ M3×3 and µ = ν =


20
20
20

 .
The optimal solution π∗ under these conditions is:

π∗ =


4.68085 4.68085 0.63830
4.68085 4.68085 0.63830
0.63830 0.63830 8.72340

 .
This result highlights the impact of congestion costs. Even though the fair allocation would

be to match a third of each group with j = 3, π∗
33 > 10 max{π∗

13, π
∗
23}.

5The ideal allocation in the absence of congestion is based entirely on the costs given by c. These costs
correspond to preferences, characteristics related to the patients’ illness, characteristics of the medical center, etc.
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Let us note that under PQ, the solution is given by

π∗ =


6.66667 6.66667 6.66667
6.66667 6.66667 6.66667
6.66667 6.66667 6.66667

 ,
and the fact that one of the groups has greater ease of access to the best medical center is no
longer reflected.

Example 4.3. In this example we compare the standard quadratic regularization model with
our proposed heterogeneous congestion cost model. Both cases share the same linear costs cij

and distance factors dij , as well as the same supply and demand constraints:

c =


1 5 5
5 1 5
5 5 1

 , d ∈ M3×3, and µ = ν =


20
20
20

 .
In the standard quadratic regularization model, aij is uniform a = 13×3, yielding the optimal
allocation:

π∗ =


8 6 6
6 8 6
6 6 8

 .
In contrast, our model introduces heterogeneity in congestion costs:

a =


2 1 1
1 2 1
1 1 2


leading to a different optimal allocation:

π∗ =


4.8 7.6 7.6
7.6 4.8 7.6
7.6 7.6 4.8

 .
Unlike the quadratic regularization model, this formulation better captures congestion differences,
reducing allocations where costs are higher and redistributing demand accordingly. This results in
a more realistic representation of congestion-driven inefficiencies. Indeed, under the homogeneous
model, congestion is assumed to be uniform across all locations, yielding a solution that fully
accommodates c. However, when congestion is present, frictions arise in transitions i → j = i,
which helps explain, for instance, why people do not receive care where they should or why the
most capable students do not end up in the best institutions.

It is worth mentioning that the model we have introduced is highly flexible, allowing us to
analyze additional cases. For instance, instead of considering the matching between three groups
of patients and the three main healthcare networks in Peru, we could group patients by type
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of illness and medical centers by their specialization. The existence of delays and long queues
reveals frictions in the matching process, further supporting the applicability of our model.

4.2 Education: Congestion Costs and School Choice Constraints

The Peruvian education system is highly complex and decentralized, unlike centralized models
in countries such as China, South Korea, and France. This decentralization has resulted in
significant heterogeneity in educational quality, particularly between urban and rural areas.
Unlike France, where an efficient transport network helps mitigate congestion-related issues
in school assignments (Eurydice - European Commission, 2024), Peru’s fragmented structure
and complicates geography exacerbates disparities in access to education, infrastructure, and
resources.

Despite this decentralization, our model remains relevant for understanding key educational
dynamics and offers valuable insights if parts of the system, or even specific subsystems such
as the High-Performance Schools (COAR), become more centralized. Indeed, as highlighted
by Alba-Vivar (2025) in line with Agarwal and Somaini (2019), transportation in Lima plays a
crucial role in educational access. A 17% reduction in travel time (equivalent to 30 minutes per
day) increased enrollment rates by 6.3%, underscoring the importance of mobility constraints in
shaping educational outcomes.

Moreover, Peru is characterized by severe congestion along major thoroughfares (World Bank,
2024; IFSA-Butler, 2024). As more individuals travel along the same routes (as Javier Prado
Oeste), congestion intensifies, making it essential to incorporate congestion costs into the model.
This effect cannot be captured by a linear structure, particularly when individuals are clustered
by geographic location. See Figures 2 and 2 to have a visual representation of the location of
main universities in Lima and most congested and main avenues.

Additionally, stronger geographic constraints, such as those in the Andes and the Amazon,
create highly congested access routes, including narrow bridges over rivers and limited trans-
portation corridors. These natural barriers further justify the introduction of a quadratic term
to account for congestion effects.

Example 4.4. This example illustrates how introducing heterogeneous quadratic costs aijπ
2
ij

distorts student allocation compared to a purely linear preference-based model. In many
developed countries, such as France or Switzerland, well-developed metro systems allow students
to access top schools regardless of distance. However, in Peru, inadequate public transportation
significantly affects school choice, leading to inefficient assignments. We consider three groups of
students and three types of schools, where cij represents student preferences, including perceived
school quality and distance constraints. Without congestion costs, students would be perfectly
sorted into their most preferred schools. The parameters are as follows:

a =


4 2 3
4 2 6
3 4 3

 , c =


1 5 100

100 1 50
100 50 1

 , d ∈ M3×3, and µ = ν =


40
40
40

 .
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When congestion costs are included, the optimal assignment is:

π∗ =


19.0952 14.8897 6.01512
9.50638 21.462 9.03166
11.3984 3.64839 24.9532

 . (13)

Here, students are not necessarily assigned to their most preferred schools due to congestion
effects. Those who would ideally attend top schools are redirected to lower-ranked institutions,
as excessive demand increases quadratic congestion costs. For comparison, when congestion costs
are removed (a = 0), the optimal assignment is:

π∗ =


40 0 0
0 40 0
0 0 40

 . (14)

Finally, under homogeneous quadratic regularization:

π∗ =


33.0833 6.91667 0
3.45833 28.7917 7.75
3.45833 4.29167 32.25

 . (15)

It is noted that Equations (14) and (15) are similar, as they both concentrate most of the
mass along the diagonal. However, the quadratic regularization prevents the solution from
exactly matching the assignment given by (14), as predicted in the literature. Nevertheless,
homogeneous quadratic regularization does not provide the flexibility to decouple congestion
costs from standard linear costs.

This is precisely where our model offers such flexibility and leads to a completely different
outcome: even if students have a strong preference for a specific educational center, the need
to travel through highly congested routes may alter their decision. In particular, from the
perspective of a social planner, this would result in assigning them elsewhere due to the strict
convex cost.

Concretely, in this example, in the Peruvian context, suppose that group i = 1 consists of top
students, with the performance decreases towards i = 3. On the other hand, school j = 1 has
the top teachers, and so on. From this perspective, the optimal assignment would be to match i
with j = i. However, when congestion is introduced, top students may live in areas with difficult
access or areas affected by a major avenue that gets heavily congested (e.g., even in La Molina,
students may need to pass through Javier Prado Oeste to reach Sánchez Carrión, see Figure 2).
As a result, despite being a better fit for the best university (in terms of potential research, etc.),
they end up attending a closer institution where there is less research activity.
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5 Conclusions

In this paper, we developed an optimal transport model with heterogeneous quadratic
regularization to account for congestion effects in matching problems. Unlike classical models
that assume linear transportation costs or entropy regularization, our formulation introduces
increasing marginal costs, providing greater flexibility for central planners aiming to clear excess
demand effectively. By incorporating congestion costs explicitly, our model offers a more realistic
representation of allocation inefficiencies caused by overcrowding in transportation.

From a theoretical perspective, we demonstrated that the optimization problem retains a
convex structure and that the uniqueness of the optimal assignment is guaranteed. However,
analytically characterizing the solutions remains challenging, as the system of equations derived
from the KKT conditions is singular. Hence, use Wolfram’s QuadraticOptimization. For the
particular case where the number of agent types and entities matches (n = m), we provided
conditions under which the model yields corner solutions in the integer setting, meaning that
each agent type is assigned to a single entity.

In terms of applications, our model is particularly useful for central planners seeking optimal
allocations while accounting for physical or bureaucratic congestion. In education, it captures
congestion effects arising when excessive numbers of students are assigned to specific institutions,
leading to infrastructure constraints and saturation of the main avenues. In healthcare, our
formulation applies to the distribution of patients across hospitals in segmented healthcare
systems, such as the Peruvian case with SIS, EsSalud, and EPS, where excessive demand in
certain hospitals results in long waiting times and service inefficiencies. Additionally, the model
can be extended to labor markets where firms face increasing costs when hiring additional workers
with similar profiles.

Although we have not estimated the parameters, our examples provide a first insight into
the advantages of our model. Moreover, Theorem 3.5 allows us to identify situations where the
optimal matching can be computed without resorting to integer convex quadratic optimization.

Future extensions of this work aim to enhance model flexibility through four key directions:

1. Dynamic Extensions: Integrating Markov Jump Linear Systems to model time-dependent
congestion dynamics, (do Valle Costa et al., 2005).

2. Infinite Agent Types: Generalizing the model to continuous distributions of agent
characteristics (Wang and Zhang, 2025).

3. Stochastic Matching: Introducing randomness in assignment costs to account for
uncertainty.

These extensions will allow for a more robust framework adaptable to complex, real-world
allocation problems. Moreover, advanced computational techniques, such as mixed-integer
quadratic programming and nonlinear constrained optimization methods, could be employed to
analyze high-dimensional and intricate cases.
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A Continuous setting

In the classical optimal transport model, we consider two sets, X ⊂ RNX and Y ⊂ RNY ,
representing distinct populations, such as women and men, workers and firms, students and
schools, or patients and doctors in hospitals. From the perspective of a central planner, the
objective is to minimize the cost of matching these populations. This cost depends on the
characteristics of the elements x ∈ X and y ∈ Y , and is assumed to be linear with respect to
the transported mass. The masses of X and Y are described by two finite measures, µ and ν,
satisfying µ(X) = ν(Y ) < ∞. The planner seeks to ensure that all mass is matched optimally.
Thus, the classical optimal transport problem is formulated as

min
π∈Π(µ,ν)

∫
X×Y

c(x, y) dπ(x, y),

where6

Π(µ, ν) =
{
π ≥ 0 |

∫
Y
π(x, y) dy = dµ

dx
,

∫
X
π(x, y) dx = dν

dy

}
.

The measure π over X × Y represents the transport plan and is thus interpreted as a matching
measure.

In the main body of this work, we assumed that both X and Y are finite sets:

X = {x1, . . . , xn}, Y = {y1, . . . , ym}.

Under this assumption, the measures take the discrete form:

µ =
n∑

i=1
µiδxi , ν =

m∑
j=1

νjδyj ,

where δa(B) = 1 if a ∈ B and 0 otherwise (Dirac’s delta measure).
However, our model extends to continuous or non-discrete spaces. Suppose π ∈ Π(µ, ν) is

absolutely continuous with respect to the product measure µ⊗ ν. Then there exists a density
f(x, y) = dπ

d(µ⊗ν) ∈ L2(µ⊗ ν) such that

dπ(x, y) = f(x, y) dµ(x) dν(y).

In this setting, we consider the following quadratically regularized optimal transport problem:

min
π∈Π(µ,ν)

∫
X×Y

c(x, y) dπ(x, y) + ε

2

∫
X×Y

w(x, y)
(

dπ

d(µ⊗ ν)(x, y)
)2

dµ(x) dν(y),

where ε > 0 is a regularization parameter and w(x, y) ∈ L2(X × Y, µ⊗ ν) ∩C(X × Y ) introduces
heterogeneity in the penalization: higher values of w(x, y) impose greater penalty on transporting
mass between locations x and y. If instead the plan π is absolutely continuous with respect to
the Lebesgue measure dxdy, we may write dπ(x, y) = ψ(x, y) dxdy, and the regularization term

6Here, dµ/dx and dν/dy denote the Radon–Nikodym derivatives with respect to the Lebesgue measure.
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becomes ∫
X×Y

w(x, y)ψ(x, y)2 dxdy.

This corresponds to penalizing the squared density of mass transport directly with respect to the
Euclidean volume measure.

In the discrete setting, the analogous formulation proceeds as follows. The transport plan
is a non-negative matrix Π = (πij) ∈ Rn×m

+ , satisfying the marginal constraints ∑j πij = µi,∑
i πij = νj . If one mimics the continuous formulation based on µ⊗ ν, then the density of π with

respect to µ⊗ ν is given by
fij = πij

µiνj
,

and the regularization term becomes

n∑
i=1

m∑
j=1

wij

(
πij

µiνj

)2

µiνj =
∑
i,j

wijπ
2
ij

µiνj
.

Thus, the discrete version of the regularized transport problem becomes

min
Π∈Rn×m

+

n∑
i=1

m∑
j=1

(
cijπij + ε

2 ·
wijπ

2
ij

µiνj

)
, subject to

∑
j

πij = µi,
∑

i

πij = νj .

In contrast, when regularization is applied directly to ∑i,j wijπ
2
ij , this corresponds to measuring

the L2 norm of the transport plan with respect to the discrete counting measure over X × Y ,
rather than with respect to µ⊗ ν. While this simpler formulation does not exactly match the
continuous model, it retains convexity and can be interpreted as a valid regularization that
penalizes large transport entries symmetrically across the grid.
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B Figures

Figure 1: Some universities in Limea, graphical representation without scale.

Here, UPCH stands for Universidad Peruano Cayetano Heredia, UNI for Universidad Nacional
de - Ingeniería, UNMSN for Universidad Nacional Mayor de San Marcos, UPN for Universidad
Privada del Norte, PUCP for Pontificia Universidad Católica del Perú, UP for Universidad del
Pacífico, UPC for Universidad Peruana de Ciencias Aplicadas and UDEP for Universidad de
Piura.

Figure 2: Main and more congested routes in Lima according to Google Map data.
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