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Abstract

We introduce a novel model based on the discrete optimal transport problem that
incorporates congestion costs and replaces traditional constraints with weighted penalization
terms. This approach better captures real-world scenarios characterized by demand-supply
imbalances and heterogeneous congestion costs. We develop an analytical method for
computing interior solutions, which proves particularly useful under specific conditions.
Additionally, we propose an O((N + L)N2L2) algorithm to compute the optimal interior
solution. For certain cases, we derive a closed-form solution and conduct a comparative
statics analysis. Finally, we present examples demonstrating how our model yields solutions
distinct from classical approaches, leading to more accurate outcomes in specific contexts,
such as Peru’s health and education sectors.
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1 Introduction

Optimal Transport (OT) (Villani, 2009; Galichon, 2016) is a mathematical technique that, in
recent years, has been integrated into economic theory, particularly in the study of matching
markets (Chiappori et al., 2010; Galichon, 2021; Dupuy et al., 2019; Carlier et al., 2023; Echenique,
Federico, Joseph Root and Feddor Sandomirskiy, 2024). Unlike classical matching models (Gale
and Shapley, 1962; Hylland and Zeckhauser, 1979; Kelso and Crawford, 1982; Roth and Sotomayor,
1990; Abdulkadiroğlu and Sönmez, 2003; Hatfield and Milgrom, 2005; Echenique, Federico and
M. Bumin, Yenmez, 2015), OT optimizes over distributions. Starting from the classical model, in
which matching costs are represented by a linear function, various extensions have incorporated
a regularization term in the objective function to obtain solutions with desirable properties such
as sparsity. Notable examples include entropic regularization (Dupuy and Galichon, 2014; Dupuy
et al., 2019; Merigot and Thibert, 2020; Galichon, 2021) and quadratic regularization (Lorenz
et al., 2019; González-Sanz and Nutz, 2024; Wiesel and Xu, 2024; Nutz, 2024). Both classical OT
and its regularized variants have been widely applied in analyzing matching markets, including
marriage markets (Dupuy and Galichon, 2014), migration dynamics (Carlier et al., 2023), labor
markets (Dupuy and Galichon, 2022), and school choice (Echenique, Federico, Joseph Root and
Feddor Sandomirskiy, 2024).

The quadratic regularization model, which is the most recent, allows incorporating a congestion
effect. This element is crucial as it enables the representation of scenarios where matching becomes
increasingly costly. This paper introduces a new model, resulting in a convex optimization
problem, built upon the quadratic regularization framework, similar to Nutz (2024), but adopting
the approach of Izmailov and Solodov (2023) by replacing equality constraints with weighted
penalization terms and introducing heterogeneity in the quadratic term. These elements are
essential as they allow for a better modeling of situations where matching cannot be properly
achieved, meaning that persistent excess demand or supply is not captured by classical models.
Moreover, quadratic heterogeneity provides a more refined representation of congestion, as it
allows congestion to vary across different pairs.

These properties are essential for modeling matching in developing countries, where access
to healthcare and education systems is hindered by significant frictions and severe congestion
resulting from inadequate infrastructure. These structural deficiencies have contributed to high
mortality rates and service shortages, as highlighted during the COVID-19 pandemic. For
instance, Johns Hopkins University Coronavirus Resource Center (2023) reports that Peru
recorded the highest per capita COVID-19 mortality rate globally, exceeding 6,400 deaths
per million inhabitants. In countries such as Peru, India, and Brazil (Kikuchi and Hayashi,
2020), congestion is particularly severe. For instance, World Bank (2024) estimates that traffic
congestion alone costs Peru 1.8% of its GDP annually. Given these conditions, accounting for
congestion and excess demand is crucial when modeling these dynamics.

The model presented in this paper, formulated from a social planner’s perspective, provides a
framework for incorporating congestion costs while accounting for excess demand in different
institutional settings. This contrasts with developed countries like France or Switzerland, where
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efficient infrastructure and policies mitigate such frictions. Our approach introduces a strictly
convex cost structure that remains analytically tractable and flexibility through the choice of the
parameters, allowing to recover situations with congestion, low congestion or even non congestion

The remainder of this paper is structured as follows. Section 2 defines the notation and
establishes the preliminary concepts. Section 3 introduces the proposed model, and examines its
theoretical properties. A key aspect is that the structure of the optimization problem allows
for an analytical solution, and enables the construction of an O((N + L)N2L2) algorithm to
compute the optimal interior solution. Section 4 provides illustrative examples that highlight the
advantages of our model, its flexibility, and its accuracy in studying scenarios where the social
planner faces congestion and is unable to ensure demand-supply equilibrium. Our empirical
analysis focuses on the Peruvian health and education sectors. All proofs are provided in the
Appendix.

2 Preliminaries

We consider two sets, X = {x1, . . . , xN} and Y = {y1, . . . , yL}. Each element xi (yj)
represents an individual or a group of individuals/entities that share certain properties and are
grouped into the same cluster. For example, in the marriage market (where usually N = L),
X is the set of men and Y is the set of women. In the case of school matching, X consists of
groups of students, grouped, for instance, according to their district, and Y is the set of schools.
We denote by µi the mass of xi and by νj the mass of yj . For instance, in the marriage market,
µi = νj = 1, while in the case of schools, νj would represent the capacity of school j. Analogously,
if X were patients and Y medical care centers, then parameters νj would represent the capacity
of the medical care center. When referring to an element of X, instead of denoting it by xi, we
usually, to simplify the notation, refer to it by i. Analogously, the elements of Y are referred to
by the index j, instead of yj . Moreover, we denote the set of indices {1, . . . , N} by I and the set
of indices {1, . . . , L} by J . Lastly, we denote by πij the number of individuals of type i matched
with j.

The problem addressed in the classic literature (Galichon, 2016; Dupuy et al., 2019; Carlier
et al., 2023), from the perspective of a central planner, is to decide how many individuals
from group i should be matched with j ∈ J and so forth for each i, minimizing the matching
cost1, which is given by means of a function C : RN,L

+ × RP → R depending on the matching
π = [πij ] ∈ RN,L

+
2, and a vector of parameters θ ∈ RP . Moreover, the central planner must

1Matching individuals incurs a cost that is not limited solely to «physical» transportation costs, which certainly
accounts for both ways (round trip), but also encompasses implicit costs linked to specific characteristics of i and
j such as tuition fee, entrance exam, languages, sex, age, etc. This is why we refer to them as matching costs
instead of transportation costs.

2In this work, we will mostly assume that the number of individuals matched can take values in the real positive
line and not only in the positive integers. Note that this is the same issue that arises when one solves the utility
maximization problem in the classical framework assuming divisible goods. Later on, we will address again this
issue and explain why considering πij ∈ R+ allows drawing solid conclusions from an economic perspective.
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ensure that there are neither excesses of demand nor supply. Hence, the central planner solves

min
π∈Π(µ,ν)

C(π; θ), (1)

where

Π(µ, ν) =

πij ≥ 0 :
L∑

j=1
πij = µi, ∀ i ∈ I ∧

N∑
i=1

πij = νj , ∀ j ∈ J

 . (2)

A solution to (1) will be from now referred to as an optimal matching or optimal (transport)
plan, and will be denoted by π∗. In the standard optimal transport model, separable linear costs
are assumed (Galichon, 2016). This is, C(π, θ) =

∑
i,j cijπij . It is therefore assumed that the

marginal cost of matching one more individual from i with j is always the same, regardless of
how many people are already matched and independent of any other variable. Hence, the central
planner seeks to solve

PO : min
π∈Π(µ,ν)

N∑
i=1

L∑
j=1

cijπij .

To solve PO, one typically employs linear programming techniques, such as the simplex method.
As discussed in the classical literature, the most general form of the OT problem allows for
the existence of infinite types, and in such a case, the optimization is done over continuous
distributions. In this paper, however, we are not going to study continuous distributions. What
we do focus on, in line with the entropic regularization problem (see, for example, Carlier et al.
(2023) and Peyré and Cuturi (2019)), is working with a variation of the optimization problem in
the discrete setting. In the case of entropic regularization (3), the problem addressed is

min
π∈Π(µ,ν)

N∑
i=1

L∑
j=1

cijπij + σπij ln(πij), (3)

with σ > 0. Given the strict convexity of f(x) = x ln x, f(0) = 0 and limx↓0+ f ′(x) = −∞, the
solution is interior, i.e. π∗

ij > 0. Another variation is the quadratic regularization, where the
problem becomes

min
π∈Π(µ,ν)

N∑
i=1

L∑
j=1

cijπij + ε

2 ||π||
2
2. (4)

Unlike the problem (3), in the case of (4), interior solutions cannot be guaranteed3. In the
model we present in the following section, we build upon the problem (4), making a considerable
number of modifications that allow us to adapt to specific economic contexts of countries with
structural problems. Before concluding this section, let us briefly note that, by a combinatorial
argument, it is possible to conclude that the number of matchings is bounded by LM in the case
where πij ∈ Z+. However, for the case πij ∈ R+, considering µi, νj > 0 for all (i, j) ∈ I × J ,
the compactness of Π(µ, ν) and continuity of the objective functions, ensure the existence of a
solution to PO and its variants by Weierstrass Theorem.

3This is a common feature with our model, it is not straightforward to determine if the solution is interior.
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3 The model

The model we propose results in the following quadratic optimization problem

PCP : min
πij≥0


α

N∑
i=1

L∑
j=1

φ(πij ; θij)

︸ ︷︷ ︸
Matching direct cost.

+ (1− α)

 N∑
i=1

ϵi

 L∑
j=1

πij − µi

2

+
L∑

j=1
δj

(
N∑

i=1
πij − νj

)2


︸ ︷︷ ︸
Costs of social objectives.

︸ ︷︷ ︸
F (π;θ,α,ϵ,δ,µ,ν).

(5)
where ϵ1, ..., ϵN , δ1, ..., δL and µ1, · · · , µN , ν1, · · · , νL are all non negative, and

φ(πij ; θij) = dij + cijπij + aijπ2
ij . (6)

The objective function in (5) represents a trade-off between the direct costs of matching,
incorporating the heterogeneous congestion effect given by

∑N
i=1

∑L
j=1 aijπ2

ij , and the central
planner’s objectives, which are defined by the targets µ = (µ1, . . . , µN ) and ν = (ν1, . . . , νL).

Unlike classical models, our approach accounts for congestion and allows for excess supply or
demand. Additionally, it introduces weight parameters, increasing flexibility.

Regarding the quadratic costs, they model a saturation effect in which matching more
individuals from i ∈ I with the same j ∈ J becomes increasingly costly. For example, from the
perspective of physical transportation costs, in countries with high vehicular congestion, the
impact of increasing from x cars to x + 1 on a given avenue is lower or equal to increasing from
x + n to x + n + 1 with n ≥ 1. Therefore, clustering individuals based on geographic location
implies that matching many individuals from the same group to a single j congests the access
route (which remains the same). The coefficient aij captures heterogeneity4, while the quadratic
term represents the previously described phenomenon5. Note that quadratic costs are not limited
to physical transportation costs but can also represent bureaucratic costs. A hospital receives
patients of the same type, and as more patients of this type arrive, the system must process an
increasing number of cases. Since they share similar characteristics, the same computer or system
is assumed to handle their processing. Given the precarious conditions in developing countries,
increasing from x to x + 1 patients may not significantly affect the system, but increasing from
x + n to x + n + 1 with n > 1 might (e.g., leading to system freezes, delays, etc.).

On the other hand, the targets and weighted penalties model the fact that the central
planner has specific objectives: educating (or providing healthcare to) µi individuals of type

4In some situations, the coefficient might be large, but in others—such as cases with few schools or hospitals,
low traffic congestion, efficient traffic lights, etc.—the coefficient is small. Moreover, one could question whether
adding a car still marginally increases costs when a route is already saturated. However, this effect only arises
when the number of travelers is excessively high relative to the route’s capacity. For simplicity, we omit this case,
as modeling a function that is initially quadratic and later constant would unnecessarily complicate the analysis
when applying FOCs.

5Instead of using π2
ij , we could consider a general strictly increasing and convex function ψ, such as ψ(πij) = eπij

or π3
ij . However, the quadratic structure facilitates quantitative analysis and preserves the consistency of the

results and modeling.
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i, while ensuring that schools (or medical centers) accommodate a student (or patient) level
close to νj . Additionally, the central planner can decide which target has greater importance
through the parameters ϵ1, . . . , ϵN and δ1, . . . , δL. The constraint

∑N
i=1 πij = νj is replaced by

the penalty term δj

[∑N
i=1 πij − νj

]2
, δj > 0, and the constraint

∑L
j=1 πij = µi is replaced by

ϵi

[∑L
j=1 πij − µi

]2
, ϵi > 0. The parameters ϵi, δj serve as weights. Note that we could use

any p ≥ 1 norm for the penalty. However, the quadratic structure simplifies the mathematical
analysis and fulfills the intended role. By allowing deviations, as we will see in the examples,
we better approximate the reality of developing countries that cannot fully ensure that demand
perfectly matches supply.

Allowing for the possibility of excess supply or demand, is reasonable in some contexts, as we
will see. Indeed, underdeveloped countries may not be able to ensure full coverage in education
and health, making it more realistic for them to face a trade-off. However, it is natural for the
central planner to seek to minimize these excesses: ensuring that children attend school, that
schools or hospitals do not become overcrowded, etc.

Finally, we impose the constraint πij ≥ 0 for all (i, j) ∈ I × J . However, we do not impose
upper bounds since we consider a population or universe that is arbitrarily large (a subpopulation
of a sufficiently large country)6. Thus, the optimization is performed over the entire space
RNL

+ . This phenomenon also justifies the penalty terms: we no longer assume a fixed number of
individuals of type i, and µi now represents a target that the central planner aims to achieve
(how many individuals of type i should ideally be matched). Similarly, the parameters νj are
also targets of the central planner.

In (6), despite its practical relevance, the term dij , representing fixed costs, does not influence
the resolution of the problem. For this reason, when considering the parameter vector θij ∈ R2,
we think of it as (cij , aij). Unlike more recent models in the quadratic regularization literature,
we allow heterogeneity in the quadratic structure.

Having now established the model, which, to the best of our knowledge, is new in the
literature7, we focus in this section on the following theoretical problems: (i) ensuring the
existence of a solution, (ii) analyzing uniqueness, (iii) addressing why optimization in RNL

+ is
reasonable and why we do not resort to integer optimization, (iv) studying how to compute
interior solutions, and (v) analyzing particular cases both from the analytical and numerical
perspective. In the next section, we compare our model with previous ones from the literature
and highlight its advantages and the new insights it provides.

Existence and uniqueness: Regarding the existence of a solution to PCP , in order to apply
Weierstrass theorem to overcome the potential issue that the optimization is carried over an

6This significantly simplifies our analysis and does not affect the model’s logic.
7Quadratic regularization does not involve penalization terms and assumes aij = ε for all (i, j) ∈ I × J . With

respect to the classical optimal transport problem, linear costs are considered. On the other hand, entropic
regularization involves Inada’s conditions, which do not appear in our model. Finally, in Izmailov and Solodov
(2023), only general results concerning penalization are given and this particular problem is not studied at all.
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unbounded set, we can actually restrict the optimization to RNL
+ ∩ Ω, where

Ω = [0, R]NL, with R = N max
1≤i≤N

{µi}+ L max
1≤j≤L

{νj}.

In fact, it is clear from the cost function F that it is strictly lower in the interior of Ω or in
the axes than when evaluated in ∂Ω (without considering the axes) or outside Ω. This is a
consequence of the coercivity of the objective function (Rockafellar, 1970). With respect to
uniqueness, it is a consequence of the strict convexity of the objective function. Indeed, the
objective function is the sum of a strictly convex function,

∑
i,j φ(πij , θij), with N + L convex

functions of the form ϱ
(∑M

m=1 ηm −Θ
)2

, with ϱ, Θ, ηm ∈ R+.

Optimization carried over RNL
+ : As we mentioned previously, similarly to the case of the

classical demand theory, we are assuming that πij ∈ R+. However, just as it does not make
sense to consume

√
2 cars, it can be also unreasonable to consider that πij is not restricted to

taking values in Z+, since it ultimately represents the number of individuals. However, given the
structure of the optimization problem—a convex quadratic optimization problem—following the
classical literature on rounding methods (Beck and Fiala, 1981) and, in particular, the discrepancy
between integer (Park and Boyd, 2018; Pia and Ma, 2022) and continuous solutions in the case
of separable quadratic functions with linear constraints (Hochbaum and Shanthikumar, 1990), it
is possible to establish bounds on the deviation of the optimal solution when transitioning from
the continuous domain RNL

+ to the integer lattice ZNL
+ , and ensure that it is sufficiently close.

The bound depends on the eigenvalues of the Hessian matrix of the objective function8. Solving
the problem in RNL

+ allows the use of nonlinear convex optimization techniques, yielding not
only computational advantages but also analytical insights. In this work, we do not delve deeply
into this aspect, but we emphasize that by adjusting the parameters, it is possible to control the
bound on the norm of the difference between the solutions in the lattice and the Euclidean space.

Interior solutions: For the sake of simplicity, we take α = 1/2. KKT first order conditions
applied to (5) yield

∂F

∂πij
= 1

2

(
φ′(π∗

ij ; θij) + 2ϵi

(
L∑

ℓ=1
π∗

iℓ − µi

)
+ 2δj

(
N∑

k=1
π∗

kj − νj

)
− γ∗

ij

)
= 0, ∀ (i, j) ∈ I×J. (7)

Here, γij is the associated multiplier to the inequality constraint πij ≥ 0. Determining whether
or not the solution is interior, is not trivial. For corner solutions, we have to iterate all possible
combinations of γ∗

ij equal or not to zero. Formally, 2NL possibilities. In general, the problem can
numerically be solved. In what follows, unless the contrary is stated, we will address the case
where the solution is interior. In this case, from KKT, we know that γ∗

ij = 0 for all (i, j) ∈ I × J .
Hence, from (7), we have ∇F (π∗) = 0. This set of equations can be written in the compact form

8Specifically, the deviation is bounded by ||πint − π∗||∞ ≤ O(ϑ(H)), where ϑ(H) = λmax(H)/λmin(H) is the
condition number.
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A
[
π∗

11 π∗
12 · · · π∗

NL

]T
= b, where

A = Diag(a11, a12, . . . , aNL)︸ ︷︷ ︸
D

+ Diag(ϵ1, . . . , ϵN )⊗ 1L×L︸ ︷︷ ︸
E

+ 1N×N ⊗Diag(δ1, . . . , δL)︸ ︷︷ ︸
F

, (8)

and b = [ϵ1µ1 + δ1ν1 − c11/2, ϵ1µ1 + δ2ν2 − c12/2, · · · , ϵN µN + δLνL − cNL/2]T . The following
lemma states that A is an invertible matrix.

Lemma 3.1. The determinant of A is strictly positive, whenever all parameters are strictly
positive.

Therefore, the linear system Aπ = b has a unique solution. What we still don’t know is
whether or not this solution belongs to RNL

++. If so, given the strict convexity of F , we would
have determined, through an ex-post analysis, the unique solution to PCP . However, it may not
always be the case that A−1b ∈ RNL

++, and it is not a trivial matter to determine. Under specific
cases, we will be able to do this. We propose both an analytical and a computational method to
solve Aπ = b. The analytical method allows us, in special cases, to derive important theoretical
conclusions, such as closed-form solutions, bounds, and perform comparative statics. From a
computational perspective, we compare our algorithm, which exploits the structure of the matrix
A, with others for solving linear systems.

3.1 Neumann’s series approach

Assumption 1. Let aij > 0 for all (i, j) ∈ I × J . Assume that

max
1≤i≤N

{ϵi} · L + max
1≤j≤L

{δj} ·N < min
(i,j)∈I×J

{aij} .

Assumption 1 implies that convex transport costs are large. Moreover, the fact that ϵi, δj are
small follows from their interpretation as normalized weights, i.e., ϵi, δj ∈ [0, 1].

Lemma 3.2. Under Assumption 1, the following holds

A−1 =
( ∞∑

k=0
(−1)k(D−1X)k

)
D−1.

Theorem 3.3. Under Assumption 1, limn→∞ πn = π∗ = A−1b, where

πn = SnD−1b =
(

n∑
k=0

(−1)k(D−1X)k

)
D−1b.

3.2 Special cases

For the aim to explicitly compute A−1, we need to impose some additional mild assumptions.

3.2.1 No interest in overcrowding or no quotas.

Assumption 2. Assume that δj = 0 for all j ∈ J and D = βI for some β > 0.
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Assumption 2 illustrates the case where the central planner does not care if in over or
underfilling schools or hospitals (F = 0), and convex costs are the same across the pairs (i, j):
aij = β. For instance, the latter applies when distances, routes, or bureaucratic systems are
almost the same for all (i, j) ∈ I × J .

Assumption 3. Assume that Lϵi < min{1, β} for all 1 ≤ i ≤ N .

In line with Assumption 1, Assumption 3 applies when convex transport costs are large.

Theorem 3.4. Under Assumptions 2 and 3, A−1 is given as follows

A−1 = I

β
+ 1

β
Diag

(
− ϵ1

β + Lϵ1
, . . . ,− ϵN

β + LϵN

)
⊗ 1L×L. (9)

A similar result can be obtained by setting E = 0, i.e., when the central planner is only
concerned with overcrowding or underutilization of facilities and does not care about population
quotas.

Corollary 3.5. Under Assumptions 2 and 3, the solution of PCP is given by

π∗
ij = bij

β
−

L∑
ℓ=1

biℓϵi

β2 + Lϵiβ
, (10)

provided that the right-hand side of (10) is positive.

Proof. This result follows directly from the computation of A−1b by using (9). ■

3.2.2 Equal weighting and identical convex costs.

Assumption 4. Let ρ and ζ be real numbers such that ρ > 2NLζ > 0, with aij = ρ and
ϵi = δj = ζ for all (i, j) ∈ I × J .

Assumption 4 implies that the central planner assigns equal weight to each social objective
and where congestion and bureaucratic costs are the same for each pair. Under this assumption,
we have D = ρI and X = ζY , where the entries of Y are given by

Yij =


2 i = j,

1 i ̸= j ∧ (⌈i/N⌉ = ⌈j/N⌉ ∨ i ≡ j (mod N)),

0 otherwise.

This allows us to write
A−1 = 1

ρ

( ∞∑
k=0

(
−ζ

ρ

)k

Y k

)
.

Under Assumption 4, we will be able to establish bounds on the optimal matching, i.e., to bound
the number of individuals matched across the pairs (i, j). Lemmas 3.6, 3.7 and 3.8 are used to
establish Theorem 3.9.
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Lemma 3.6. Let k ≥ 1 be a positive integer. Then

max
1≤i, j≤NL

{(
Y k
)

ij

}
≤ (2NL)k

NL
.

Lemma 3.7. Let k ≥ 2 be a positive integer.Then

(NL)⌊k/2⌋

NL
≤ min

1≤i, j≤NL

{(
Y k
)

ij

}
.

Lemma 3.8. Under Assumptions 1 and 4, the lower and the upper bounds of
(
A−1)

ij can be
expressed in terms of N, L, ζ and ρ,

C1(N, L, ζ, ρ) ≤ (A−1)ij ≤ C2(N, L, ζ, ρ), (11)

where

C1 = ζ
(
4ζN3L3 (2ζ3 − 2ζρ2 − ρ3)+ 8N2L2ρ2 (ρ2 − ζ2)+ ζNLρ2(2ζ + ρ)− 2ρ4)

ρ4 (ζ2NL− ρ2) (2NL− 1) (2NL + 1)

C2 = ζ2NLρ(4NL− 1)
(ρ2 − ζ2NL) (ρ− 2NLζ) (ρ + 2NLζ) .

Theorem 3.9. Under Assumptions 1 and 4, it follows that π∗
ij ≤ NLC̃, for all (i, j) ∈ I × J ,

where
C̃ = max{|C1|, C2} · max

1≤i≤N
1≤j≤L

{∣∣∣∣(ϵiµi + δjνj)− cij

2

∣∣∣∣} .

Theorem 3.9 is of particular interest as it allows us to determine, without computing the
inverse of A, the maximum number of individuals that would be matched between two points
i, j. In practice, this enables, for example, the establishment of capacity constraints on routes or
spaces.

3.3 Algorithm for computing π∗

We now provide an efficient algorithm to compute π∗ ∈ RNL
++. This is established in Theorem

3.10. First, let us rewrite matrix A given in (8) as follows:

A = Diag(a11, . . . , aNL) +
N∑

i=1

(
ϵ
1/2
i ei ⊗ 1L×1

) (
ϵ
1/2
i eT

i ⊗ 11×L

)
+

L∑
j=1

(
δ

1/2
j ej ⊗ 1N×1

) (
δ

1/2
j eT

j ⊗ 11×N

)
.

Theorem 3.10. For interior solutions π∗, Algorithm 1 computes π∗ in O((N + L)N2L2) time.
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Algorithm 1 Optimize (a, b, ϵ1, . . . , ϵN , δ1, . . . , δL)
1: Input: Matrices a ∈ RNL

++, b ∈ RNL and parameters ϵ1, . . . , ϵN , δ1, . . . , δL ∈ R++
2: Output: π∗ ∈ RNL

3: Initialize A−1 ← Diag(1/a11, . . . , 1/aNL) ∈ RNL,NL

4: for i← 1, . . . , N do
5: Define u(i) ∈ RNL by u(i) := ϵ

1/2
i ei ⊗ 1L×1

6: A−1 ← A−1 − A−1u(i)u(i)T A−1

1 + u(i)T A−1u(i) via Sherman-Morrison formula
7: end for
8: for j ← 1, . . . , L do
9: Define v(j) ∈ RNL by v(j) := δ

1/2
j ej ⊗ 1N×1

10: A−1 ← A−1 − A−1v(j)v(j)T A−1

1 + v(j)T A−1v(j) via Sherman-Morrison formula
11: end for
12: return A−1b

Time Sparse A Galactic Authors
O(N3L3) No No Gaussian Elimination

O((NL)2.81) No No Strassen (1969)
O((NL)2.331645) Yes Yes Peng and Vempala (2024)
O((NL)2.371339) No Yes Alman et al. (2025)

O((N + L)N2L2) No No This paper

Table 1: Algorithms for solving our linear system. Assume A is sparse if it has Õ(NL) nonzero
entries. “Galactic” refers to an algorithm wonderful in its asymptotic behavior, but is never used
to actual compute anything (Lipton (2010)).

It was observed by Vassilevska (2015) that inversion can be reduced to multiplication with an
equivalent runtime for Strassen (1969) and Alman et al. (2025). Even though Peng and Vempala
(2024) and Alman et al. (2025) provide the best bounds, they are impractical due to large
constants, leaving us with the remaining three algorithms for practical purposes. Among these,
when L = Θ(N), our algorithm has the tightest upper bound compared to classical Gaussian
elimination and an inversion derived from Strassen multiplication.

3.4 Comparative statics

Although we know how to compute π∗ through Neumann’s series or Algorithm 1, obtaining
a closed-form expression for π∗

ij using these techniques is not straightforward. Therefore, to
facilitate comparative statics, one possible approach is to approximate the matrix A−1 using
Neumann’s series. First, assume that A−1 ≃ D−1. This simplification allows us to derive a
closed-form expression for π∗

ij , providing initial insights. Under the assumption A−1 ≃ D−1, we
obtain:

π∗
ij ≃

2(ϵiµi + δjνj)− cij

2aij
.

From this expression, it follows that ∂π∗
ij/∂aij , ∂π∗

ij/∂cij < 0 and ∂π∗
ij/∂ϵi, ∂π∗

ij/∂δj ,
∂π∗

ij/∂µi, ∂π∗
ij/∂νj > 0. These results align with standard economic intuition. However,
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under this rough approximation, we obtain ∂π∗
ij/∂θkℓ = 0 for (k, ℓ) ̸= (i, j), which is unrealistic

since we expect a substitution effect. To improve upon this, consider a refined approximation:

A−1 ∼ D−1 −D−1XD−1 = D−1 − (D−1)2X.

From smooth comparative statics, if π∗ ∈ RNL
++ is an interior solution to PCP associated with the

parameter vector (θ, ϵ, δ, µ, ν) ∈ R2NL
++ × RN

++ × RL
++ × RN

++ × RL
++, then:[

∂π∗
ij

∂θkℓ

]
= −A−1

(θ,ϵ,δ,µ,ν)[INL×NL | 2Diag(π∗
11, · · · , π∗

NL)]. (12)

Thus, under the approximation A−1 ∼ D−1 − (D−1)2X, we obtain:[
∂π∗

ij

∂θkℓ

]
=
[

∂π∗
ij

∂ckℓ

∣∣∣∣ ∂π∗
ij

∂akℓ

]
≃ −

[
D−1 − (D−1)2X |A−1

Π,2

]
, (13)

where A−1
Π,2 consists of multiplying column ij of D−1− (D−1)2X by π∗

ij . From (13), if maxi,j{ϵi +
δj} < 1, then: ∂π∗

ij/∂θij < 0 for all (i, j) ∈ I × J , ∂π∗
ij/∂θkℓ > 0 for i ̸= k and j = ℓ or i = k and

j ̸= ℓ, ∂π∗
ij/∂θkℓ = 0 if i ̸= k and j ̸= ℓ. Then, we conclude from (13) that:

∂π∗
ij/∂cij = −(1− (ϵi + δj))/a2

ij < 0,

∂π∗
ij/∂ciℓ = ϵi/a2

ij > 0, ∂π∗
ij/∂ckj = δj/a2

ij > 0, ∂π∗
ij/∂ckℓ = 0 if i ̸= k, j ̸= ℓ.

∂π∗
ij/∂aij = −2π∗

ij(1− (ϵi + δj))/a2
ij < 0, ∂π∗

ij/∂aiℓ = 2π∗
iℓϵi/a2

ij > 0,

∂π∗
ij/∂akj = 2π∗

kjδj/a2
ij > 0, ∂π∗

ij/∂akℓ = 0 if i ̸= k, j ̸= ℓ.

These results are much closer to what we would expect. Indeed, we now observe a substitution
effect: if the cost of matching individuals of type i with j increases ceteris-paribus, then the
number of individuals of type i matched with ℓ (where ℓ ≠ j) increases. However, it is important to
note that these results are obtained under a truncated Neumann series approximation, and should
be interpreted accordingly—as an approximation. Nevertheless, note that under Assumptions 1,
2, and 3, it is possible to compute the effects of the parameters directly using (10). In such case,
similar conclusions can be derived.

3.5 Case N = L

The case N = L > 1 is particularly important in the classical literature on the marriage
market (Roth and Sotomayor, 1990). Similarly, as we will see in Section 4, it is of particular
interest when analyzing the healthcare sector in Peru. If the solution in our model is interior, the
problem reduces to solving a system of linear equations, and the condition N = L improves the
upper bound on the number of operations required by Algorithm 1 compared to folklore linear
system solvers. On the other hand, classical transportation problems and their variants require
approximation algorithms for solving convex optimization problems in finite dimensions (Merigot
and Thibert (2020)).
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4 Examples and applications

4.1 Health care

The Peruvian healthcare system is characterized by being a fragmented system with three
main types of medical care centers: SIS (Seguro Integral de Salud), EsSalud, and EPS (Entidades
Prestadoras de Salud) (Anaya-Montes and Gravelle, 2024). EPS corresponds to private health
insurance offered by companies such as Rimac, Mapfre, Pacífico, La Positiva, among others.
These insurances are aimed at formal workers seeking additional coverage beyond mandatory
insurance. On the other hand, EsSalud is the public health insurance financed by contributions
from formal workers and employers, both from the private and public sectors. Finally, SIS is a
universal public insurance targeting people in poverty, informals, or without the ability to pay
EPS. For the year of the pandemic (2020), SIS and EsSalud together covered more than 80% of
the population, while less than 10% was covered by EPS, see Table 2.

Insurance Covered people
EPS 8%

EsSalud 30%
SIS 53%

Table 2: Percentage of enrollees in Peru’s healthcare system by type of medical care center in
2020, before COVID-19. At that time, Peru’s population was 32,838,579 (Data Commons, 2025).

Under normal circumstances, an individual insured by SIS cannot be simultaneously enrolled
in EsSalud or an EPS, and vice versa. The only permitted association is between EsSalud
and EPS, where private insurance acts as a complementary coverage to the public system
(Anaya-Montes and Gravelle, 2024; Velásquez, 2020). Ideally, an optimal allocation would ensure
that informal workers are covered by SIS, while formal workers are appropriately distributed
between EsSalud and EPS. However, in practice, overlapping affiliations occur, and individuals
often seek medical care outside their designated system. Furthermore, a similar issue arises
when categorizing healthcare utilization by type of illness: specialized medical centers create
unintended overlaps in patient distribution across insurance networks. Additional issues related
to congestion and deficiencies are detailed in Table 3.

Given Table 3, it is evident that Peru’s healthcare system faces significant issues, including
service inefficiencies, congestion costs, and saturation. Our model effectively captures these
elements, unlike traditional matching models. Our approach can help identify critical areas for
improvement, optimizing healthcare demand coverage and reducing congestion costs by analyzing
the effect of parameters over π∗. It allows for the prioritization of interventions to address the
most severe inefficiencies. To achieve this, estimating parameters is essential. This aligns with
empirical research such as Doval et al. (2024) and the methodologies outlined in Agarwal, Nikhil
and Somaini, Paulo (2023), which provide a structured framework to evaluate these inefficiencies.
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Identified Problem Quantifiable Indicator Source

Shortage of medical personnel
in primary healthcare.

12 doctors per 10,000 inhab-
itants, far from the WHO-
recommended standard of 43.

Bendezu-Quispe et al. (2020).

Lack of hospital beds in Peru’s
healthcare system.

1.6 beds per 1,000 inhabitants,
below the regional average.

World Bank (2020).

Congestion in neonatal inten-
sive care units in public hospi-
tals

50% of units experience inef-
ficiency due to patient over-
crowding.

Arrieta and Guillén (2017).

Inefficiencies in patient referral
system.

High percentage of patients
treated in facilities not
equipped for their conditions.9

Soto (2019).

Coverage noncompliance, high
waiting times, and some val-
ues of medical performance per
hour out of range.

Coverage of up to 86% for cer-
tain complex treatments.

EsSalud (2025a).

Deferrals in certain cities are
very high.

More than 23% of appoint-
ments were postponed (Jan-
Mar 2025).

EsSalud (2025b).

Table 3: Issues in patient allocation within Peru’s healthcare system.

In Example 5.1, we simulate three groups of patients in three healthcare networks (SIS,
EsSalud, EPS). Group 3 consists of individuals who can afford an EPS for high-complexity care.
High-complexity care refers to a set of less frequent and more complex health interventions,
such as advanced surgical procedures and oncological treatments. Group 2 consists of formal
workers who can only use EsSalud for high-complexity care. Note that they are not excluded
from affording an EPS, but if they have one, it will be used exclusively for low-complexity care.
Group 1 consists of the remaining individuals, including informal workers.

A particular edge case in Group 1 includes wealthy individuals engaged in illegal activities
(e.g., drug traffickers or businessman avoiding taxes). These individuals are informal workers but
may still afford an EPS. The central planner reasonably operates under the assumption that
such cases do not exist. Moreover, it operates assuming no overlaps.10

Groups 1 and 3 exhibit significant differences in characteristics, such as socioeconomic status,
which increases the cost of mismatching between them. The cost is even higher when there are
bureaucratic or legal frictions, as seen in the case of groups 1 and 2, where an EsSalud insured
individual cannot be covered simultaneously by SIS, and vice versa (Anaya-Montes and Gravelle,

9In 2016, the MINSA (Ministry of Health) reported a shortage of over 47,000 healthcare professionals. Addi-
tionally, 36% of medium and high-complexity facilities lacked sufficient personnel, 44% did not have adequate
equipment, and 25% had infrastructure deficiencies.

10It is important to emphasize that our model is designed to be executed at a specific point in time. Thus, the
planner does not seek overlaps, and therefore, they are not enabled in the model.
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2024). Our model accounts for this heterogeneity in costs, recognizing that legal constraints
impose significantly higher penalties than other sources of mismatching. For instance, while
receiving treatment for a simple illness at a high-complexity facility incurs some inefficiency, the
cost associated with legal barriers preventing access to appropriate healthcare is substantially
greater. Moreover, incorporating penalties and weighted constraints allows the model to capture
excess demand effectively. Unlike the solutions in traditional models (see Example 5.2), our
model (Example 5.1) assigns almot zero or one to the match between groups 1 and 2.

Example 5.3 highlights the flexibility of our model by introducing ε1, . . . , εN and δ1, . . . , δL. In
the Peruvian context, the government may prioritize patients from EsSalud due to its connection
to formal employment, resulting in higher weights assigned to the constraint related to µ2.
On the other hand, the goal is to prevent SIS from becoming overcrowded while maximizing
facilities utilization. This objective is achieved, as the example shows that row 2 and column 1
bear the highest load without exceeding µi or δj , with respect to the other rows and columns
(proportionally to the target mass).

In Example 5.4, we set
∑N

i=1 µi >
∑L

j=1 νj , which is crucial for an appropriate representation
of excess demand, but additionally. Quadratic costs exacerbate the excess demand. The observed
effect, due to the intentionally chosen parameters, reflects that almost no one from group 2
is matched. The parameters can certainly be adjusted to obtain more realistic values. The
example illustrates how our model effectively captures excess demand, a present phenomenon in
the Peruvian reality, see Table 3.

4.2 Education

The education system in Peru is highly complex due to its high degree of decentralization
at both the primary and higher education levels. While this decentralization aims to improve
educational management, it has generated significant disparities between urban and rural regions
(Laveriano, 2010). Only a few subsystems, such as the High-Performance Schools (COAR),
maintain a centralized management model, ensuring homogeneous standards (Alcázar and
Balarin, 2021). However, despite not being a centralized system - which would make our model
better suited - the level of congestion in Lima and its impact on education justify the introduction
of a strictly convex structure. Moreover, since not everyone enrolls in school, partly due to
geographic and access limitations, the penalties are well-founded.

Specifically, in Peru, infrastructure disparities and access constraints have affected educa-
tional equity (Alcázar and Balarin, 2021). Geographic barriers, particularly the Andes and
the Amazon rainforest, exacerbate these inequalities by severely limiting accessibility. These
mobility constraints directly impact school attendance, contributing to persistent enrollment gaps,
especially in secondary education (Alba-Vivar, 2025). Tables 4 and 5 illustrate the evolution
of enrollment rates in primary and secondary education, showing gradual improvement but
persistent urban-rural disparities.
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Area 2021 2022 2023 2024 Variation 2024/2023
National 87.1 91.3 91.3 96.0 4.7%
Urban 87.1 91.2 91.7 96.7 5%
Rural 87.1 91.7 89.8 93.6 3.8%

Table 4: Net enrollment rate in primary education in Peru (2021-2024) (INEI, 2024).

Area 2021 2022 2023 2024 Variation 2024/2023
National 80.1 81.5 86.0 88.7 2.7%
Urban 80.7 81.4 86.7 88.2 1.5%
Rural 78.1 81.8 83.6 90.0 6.4%

Table 5: Net enrollment rate in secondary education in Peru (2021-2024) (INEI, 2024).

A comprehensive study on the impact of congestion on enrollment is provided by Alba-Vivar
(2025)11, highlighting its significance, in line with the findings of Agarwal and Somaini (2019),
thus, justifying the relevance of our model. Indeed, congestion is a major issue in Peru’s education
system, particularly in urban areas. According to World Bank (2024), Lima is one of the most
congested cities in Latin America. It suffers from severe traffic bottlenecks that disproportionately
affect students from lower-income districts (Alba-Vivar, 2025). When large numbers of students
travel from the same location to the same school, the primary roads connecting them become
saturated, increasing commuting times.

Thus, the Peruvian education system is characterized by lack of access, excessive demand,
and limited supply, combined with sensitivity to physical traffic congestion, in contrast to certain
education systems, such as the French one (Eurydice - European Commission, 2024; Ministère de
l’Éducation Nationale et de la Jeunesse, 2024), which ensures universal education, and benefits
from a much more modern transportation system. Therefore, the model we propose is well-suited
to represent this situation (other cities with congestion such as Mumbai, Jakarta or São Paulo
(Kikuchi and Hayashi, 2020) could also be studied).

Given these characteristics, our model better aligns with the needs of a central planner in an
economic context characterized by traffic congestion and the inability to guarantee education
for all. Traditional OT models, by imposing the conditions in (2), do not apply as effectively.
Our model is predictive and designed to better fit reality. While there is no social planner in the
Peruvian case, in the hypothetical scenario where changes are made to centralize education at
different levels, the flexibility of our model becomes an advantage, allowing the social planner to
better adapt to real-world conditions.

Example 5.5 is key to understand how our model performs this. We consider four student
groups (N = 4) and three schools (L = 3). The groups represent: wealthy high-achieving students
(i = 1), poor high-achieving students (i = 2), wealthy low-achieving students (i = 3), and poor
low-achieving students (i = 4). School j = 1 is top-ranked and expensive, j = 2 has an average
ranking and a mid-range price, and j = 3 is lower-ranked but more affordable. Transportation
costs reflect the greater commuting difficulties faced by poor students, who usually use public

11Alba found that the 17% reduction in travel time (equivalent to 30 minutes per day) increased the enrollment
rate by 6.3%.
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transportation that runs along the most congested main avenues (Alba-Vivar, 2025), while
linear costs capture preferences, ensuring that better students prefer better schools while weaker
students do not, controlling also by monetary cost. The solutions highlight key differences: PCP

introduces quadratic penalties, leading to assignments where students with fewer resources, for
whom matching is more costly due to their location and the assigned mode of transportation (as
transportation in their area is precarious), are not matched. In contrast, those who have better
facilities (positive correlation between socioeconomic status and the quality of transportation)
are matched more easily. Moreover, high-achieving wealthy students are never matched with
low-cost, low-quality institutions, and low-achieving poor students are never matched with the
top, expensive school. Hence, our model predicts the complications arising from transportation
costs and the unfortunate reality that education cannot be guaranteed for everyone. For example,
Peru’s geography excludes certain populations in the highlands and jungle, making it very costly
for the central planner to complete the match. In Example 5.5, 70% of the top wealthy students
are matched, but only almost 3 out of 10 of the poorer, less top-performing students are matched.
In this case, both the linear and quadratic models capture the fact that preferences result in 0
individuals from group i = 1 being matched to j = 3. However, once again, they do not provide
the flexibility for

∑
j π∗

ij ̸= µi, required in some contexts: for countries like Peru or others in the
region in Latin America, ensuring the equilibrium is not feasible given the constraints.

5 Conclusions

This paper introduces a novel framework for analyzing mismatching, congestion effects, and
supply-demand imbalances in developing economies matching markets. Our model extends the
classical optimal transport framework by incorporating heterogeneous quadratic regularization and
penalty terms for deviations from target allocations. Unlike traditional approaches that impose
strict equality constraints, our formulation allows for more realistic depictions of inefficiencies,
capturing excess demand, underutilization, and the role of heterogenous congestion costs. We
have also analyzed the resulting optimization problem in detail, establishing conditions for the
existence and uniqueness of solutions. Furthermore, we propose both analytical and computational
methods to effectively compute interior solutions. Our approach provides not only theoretical
insights but also practical tools for addressing real-world mismatching and congestion issues.

In summary, our model provides considerable flexibility, allowing for heterogeneity in conges-
tion costs, i.e., some aij could be very small. Removing restrictions enables a better approximation
of the reality in developing countries, where equilibrium equations Π(µ, ν) do not hold uniformly.

Applying our model to Peru’s healthcare sector highlights its ability to explain observed
inefficiencies, and provide more flexibility to the central planner when they cannot ensure
matching the entire population adequately, which is common in developing or poor countries.
The fragmented nature of the public insurance system exacerbates mismatching, leading to
suboptimal patient distribution and increased congestion in specific medical centers. Our
framework captures these distortions by introducing quadratic congestion costs and penalizing
deviations from optimal allocations. Although we have focused on the Peruvian case due to the
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aforementioned data availability constraints, the model can be applied to centralized matching
situations with heterogeneous congestion costs and excess supply and demand.

Future research could extend this framework to dynamic settings, stochastic environments
where parameters evolve over time (e.g., Markov Jump Linear Systems, since at different times of
the day, traffic is less sensitive to new cars), and empirical validation using real-world matching
data. Determining whether the solution is interior in terms of the parameters is not a trivial matter
and remains to be explored. Furthermore, exploring policy implications, such as optimal subsidy
structures or decentralized decision-making mechanisms, could provide valuable information to
address inefficiencies in public service delivery.

Our model aims to provide central planners with a mathematically flexible tool to approximate
allocation problems (without restricting solutions to the integer domain), while allowing for
imbalances between supply and demand and incorporating congestion costs. This is particularly
relevant in contexts where congestion costs are significant and where, unlike in highly developed
countries, ensuring universal access to healthcare and education, as well as preventing the
saturation of these services, remains a major challenge.
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Appendix A. Proofs

Proof of Lemma 3.1. First, det(D) =
∏

(i,j)∈I×J aij > 0, det(E) = det(F ) = 0. On the other
hand, the eigenvalues of E are non-negative since the eigenvalues of Diag(ϵ1, ..., ϵN ) are ϵi > 0
and the eigenvalues of 1L×L belong to {0, L}. Hence, the products of eigenvalues ϵi · 0 and
ϵi · L are non-negative, and so, E is positive semi-definite. Similarly, F is positive semi-definite.
Thus, A is the sum of a diagonal and positive definite matrix and two other symmetric and
semi-positive definite matrices. According to Zhan (2005)12

det(A) = det(D + E + F ) ≥ det(D + E) + det(F ) ≥ det(D) + det(E) + det(F ) > 0. ■

Proof of Lemma 3.2. Let A = D + X, where X = E + F . Then,

A−1 = (D + X)−1 = (I − (−1)D−1X)−1D−1.

Then, for all λ ∈ σ(D−1X), λ ≤ maxi,j {1/aij} · (λE
max + λF

max), where λE
max = maxi{ϵi} · L and

λF
max = maxj{δj} ·N. Thus,

∥∥D−1X
∥∥

σ < 1 13,

(I − (−1)D−1X)−1 =
∞∑

k=0
(−1)k(D−1X)k.

Then, by multiplying the series on the right hand side by D−1, the claim follows. ■

Proof of Theorem 3.3. Define

En = A−1 − Sn =

 ∞∑
k=n+1

(−1)k(D−1X)k

D−1.

On one hand ∥πn − π∗∥∞ = ∥Enb∥∞ ≤ ∥Enb∥2. On the other hand,

∥Enb∥2 ≤
√

NL

∥∥∥∥∥∥
∞∑

k=n+1
(−1)k(D−1X)k

∥∥∥∥∥∥
σ

∥∥∥D−1b
∥∥∥

∞
≤
√

NL
∥∥D−1X

∥∥n+1
σ

∥∥D−1b
∥∥

∞
1− ∥D−1X∥σ

.

Given ε > 0, let

Nε = max
{

1,

⌈∣∣∣∣∣log∥D−1X∥σ

(
ε
(
1−

∥∥D−1X
∥∥

σ

)
√

NL ∥D−1b∥∞

)∣∣∣∣∣
⌉}

.

For n ≥ Nε, we have ∥πn − π∗∥∞ < ϵ. ■
12For Minkowski’s determinant inequality and its generalizations, see Marcus and Gordon (1970), Artstein-Avidan,

Shiri and Giannopoulos, Apostolos and Milman, Vitali D. (2015).
13∥·∥σ denotes the spectral norm.
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Proof of Theorem 3.4. By using classical properties of Kronecker product, we have

A−1 = I

β
+
[ ∞∑

k=1
(−1)k

( 1
β

)k

(Diag(ϵ1, . . . , ϵN )⊗ 1L×L)k

]
D−1

= I

β
+ 1

βL

∞∑
k=1

(−1)k
(

L

β

)k

(Diag(ϵk
1, . . . , ϵk

N )⊗ 1L×L)

= I

β
+ 1

βL
Diag

( ∞∑
k=1

(−1)k
(

Lϵ1
β

)k

, . . . ,
∞∑

k=1
(−1)k

(
LϵN

β

)k
)
⊗ 1L×L

= I

β
+ 1

β
Diag

(
− ϵ1

β + Lϵ1
, . . . ,− ϵN

β + LϵN

)
⊗ 1L×L. ■

Proof of Lemma 3.6. The claim certainly holds for k = 1. Now, assuming it holds for k ≥ 1, it
follows by induction that

max
1≤i,j≤NL

{(
Y k+1

)
ij

}
= max

1≤i,j≤NL

{
NL∑
ℓ=1

(
Y k
)

iℓ
Yℓj

}
≤

NL∑
ℓ=1

(2NL)k

NL
· 2 = (2NL)k+1

NL
. ■

Proof Lemma 3.7. We have two distinct possibilities.
Case k = 2m with m ≥ 1 . We now proceed by induction. We will manually verify that each(
Y 2)

ij =
NL∑
ℓ=1

Yiℓ · Yℓj satisfies the inequality. On the diagonal we have

(
Y 2
)

ii
=

NL∑
ℓ=1
ℓ̸=i

Yiℓ · Yℓi + Yii · Yii ≥ 4.

For i ̸= j, set
ℓ0 = N

(⌈
j

N

⌉
−
⌊

i− 1
N

⌋
− 1

)
+ i.

Then ℓ0 ≡ i (mod N) and so Yiℓ0 ≥ 1. On the other hand,

ℓ0 ∈
[
N

(⌈
j

N

⌉
− 1

)
+ 1, N

⌈
j

N

⌉]
implies ⌈ℓ0/N⌉ = ⌈j/N⌉. So, Yℓ0j ≥ 1. It follows that

(
Y 2
)

ij
=

NL∑
ℓ=1
ℓ̸=ℓ0

Yiℓ · Yℓj + Yiℓ0 · Yℓ0j ≥ 1.

Assuming min1≤i,j≤NL

{(
Y 2m

)
ij

}
≥ (NL)m/NL holds for m ≥ 1, we obtain

min
1≤i,j≤NL

{(
Y 2m+2

)
ij

}
= min

1≤i,j≤NL

{
NL∑
ℓ=1

(
Y 2m

)
iℓ
·
(
Y 2
)

ℓj

}
≥

NL∑
ℓ=1

(NL)m

NL
= (NL)m+1

NL
.
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Case k = 2m + 1 with m ≥ 1 . We prove this by induction on m starting with the base case Y 3:

(
Y 3
)

ij
=

NL∑
ℓ=1

(
Y 2
)

iℓ
· Yℓj =

NL∑
ℓ=1
ℓ̸=j

(
Y 2
)

iℓ
· Yℓj +

(
Y 2
)

ij
· Yjj ≥ 2.

Assume the statement holds for m ≥ 1, then

min
1≤i,j≤NL

{(
Y 2m+3

)
ij

}
= min

1≤i,j≤NL

{
NL∑
ℓ=1

(
Y 2m+1

)
iℓ
·
(
Y 2
)

ℓj

}
≥

NL∑
ℓ=1

(NL)m

NL
= (NL)m+1

NL
.

This completes the proof. ■

Proof of Lemma 3.8. We write A−1 in terms of Y

A−1 = 1
ρ

I −
(

ζ

ρ

)
Y +

∑
m≥1

(
ζ

ρ

)2m

Y 2m −
∑
m≥1

(
ζ

ρ

)2m+1
Y 2m+1


and apply Lemmas 3.6 and 3.7 to bound the series as follows,

ζ2NL

ρ2 − ζ2NL
≤
∑
m≥1

(
ζ

ρ

)2m (
Y 2m

)
ij
≤ 4ζ2N2L2

ρ2 − 4ζ2N2L2

ρ3

ρ(ρ2 − ζ2NL) ≤
∑
m≥1

(
ζ

ρ

)2m+1 (
Y 2m+1

)
ij
≤ 8ζ3N2L2

ρ(ρ2 − 4ρ2N2L2) .

Therefore, (Aij)−1 is bounded from above by

1
ρ

(
1 + 4ζ2N2L2

ρ2 − 4ζ2N2L2 −
ρ3

ρ(ρ2 − ζ2NL)

)
,

and from below by

1
ρ

(
−2
(

ζ

ρ

)
+ ζ2NL

ρ2 − ζ2NL
− 8ζ3N2L2

ρ(ρ2 − 4ρ2N2L2)

)
.

From here, (11) follows. ■

Proof of Theorem 3.9. By triangle inequality,

π∗
ij ≤ ||π∗||∞

= max
1≤i≤N
1≤j≤L

{∣∣∣∣∣
NL∑
k=1

(
A−1

)
(i−1)L+j k

· b⌈k/L⌉ k−L⌊(k−1)/L⌋

∣∣∣∣∣
}

≤
NL∑
k=1

max
1≤i≤N
1≤j≤L

∣∣∣∣(A−1
)

ij

∣∣∣∣ · max
1≤i≤N
1≤j≤L

|bij |

= NLC̃. ■
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Proof of Theorem 3.10. Consider Algorithm 1. It is easy to see that each prefix sum of A is
invertible. Hence, we can iteratively apply the Sherman-Morrison formula with a rank-1 update
at each step. Then, it is clear that Lines 3 and 12 take O

(
N2L2). First, the number of iterations

for the for-loops on Lines 4-7 and 8-11 is N + L. We then show that each time we enter any
for-loop, the time spent is O

(
N2L2). Computing 1 + wT A−1w takes O

(
N2L2), so the only

possible optimization is finding the optimal parenthesization for the product A−1wwT A−1. Since
there are only five possible ways to parenthesize the expression, we determine by brute force that
computing (A−1w)(wT A−1) also takes O

(
N2L2). This implies the desired time complexity of

O
(
(N + L)N2L2). ■

Appendix B. Numerical examples

We define PQ as the following optimization problem:

PQ : min
π∈Π(µ,ν)

N∑
i=1

L∑
j=1

φ(πij , θij),

where φ is as in (6). PQ is a generalization of the quadratic regularization problem in the discrete
setting.

Example 5.1. The parameters used for solving PCP with d = 5I3×3 and α = 0.5 are

c =


1 50 20
50 1 20
20 10 1

 , a =


1 5 10
5 1 2
10 5 1

 , ϵ = δ =


0.3
0.3
0.3

 , µ =


100
50
20

 and ν =


90
40
40

 .

The optimal solution π∗ obtained using Algorithm 1 in Mathematica 14.1 14 is

π∗ =


34.7802 0.19412 1.65935
0.10148 15.6978 3.41038
0.883807 0.905689 9.65139

 .

Example 5.2. Using the same parameters as in PCP but enforcing the marginal constraints
Π(µ, ν) and removing penalization, the optimal solutions to PQ and PO are

π∗
PQ

=


84.275 8.84062 6.88442
4.2985 30.4206 15.2809
1.42655 0.73873 17.8347

 , π∗
PO

=


90 0 10
0 40 10
0 0 20

 .

Example 5.3. Using the same parameters as in PCP but changing weighting to ϵ =
14We also ran QuadraticOptimization and verified that the optimal plans coincide.
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[
0.4 1 0.2

]T
and δ =

[
1 0.5 0.4

]T
leads to

π∗ =


50.7142 0.360177 1.75142
4.56352 22.9044 7.05884
2.37786 0.873057 9.57857

 .

Example 5.4. Modifying the parameters with respect to Example 5.3 as follows

a =


1 20 2
20 5 2
5 2 0.5

 , µ =


200
50
10

 and ν =


100
20
50


yields

π∗ =


69.4335 1.23953 19.2527
1.52132 6.95671 11.9992
3.14146 0.282174 7.55862

 .

Example 5.5. Consider the following parameters for PCP with d = 14×3 and α = 0.5:

c =


0.1 1 6
0.2 1 4
4 1 0.2
8 1 0.1

 , a =


0.5 0.5 0.5
2 2 1

0.5 0.5 0.5
2 2 1

 , ϵ =


0.2
0.2
0.2
0.2

 , δ =


0.2
0.2
0.2

 , µ =


10
10
10
10

 , ν =


10
20
10

 .

The solution to the optimization problems are15

π∗
PCP

=


3.25505 3.89254 0
1.20974 1.39412 0.333926

0 3.99723 2.88862
0 1.33717 2.17004

 , π∗
PQ

=


4.18 5.82 0

3.25571 3.69071 3.05357
1.25857 6.79857 1.94286
1.30571 3.69071 5.00357


and

π∗
PO

=


10 0 0
0 10 0
0 10 0
0 0 10

 .

15In this example, π∗
PCP

is not an interior solution. Therefore, it is not possible to use Algorithm 1 to solve the
problem. Instead, we use QuadraticOptimization.
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